【深度学习基础知识 - 30】softmax的概念、作用以及存在的问题

本文介绍了softmax函数在深度学习中的基本概念和计算公式,同时讨论了softmax可能导致的上溢和下溢问题以及解决方案。此外,文章还提及了argmax和soft-argmax的区别,argmax虽然能获取最大概率位置但不可导,而soft-argmax作为可导的替代方案。
摘要由CSDN通过智能技术生成

softmax是深度学习任务中常用于计算最终输出类别的函数。

1. softmax概念

  • softmax和我们普通意义上的max函数不同,每一个元素都有一个概率,而不是其中一个元素为1,其余为0。它的含义是对于输入向量,有多大的概率去选择元素1、元素2、元素3等,主要的目的是使得概率计算过程可导。

2. softmax计算公式

在这里插入图片描述

3. softmax可能遇到的问题

  • 因为softmax函数中存在指数,所以可能会出现上溢和下溢问题,导致最终结果错误但是不会报错,因此使用softmax函数时候一定要考虑该问题,否则后续出问题了是难以定位的。
  • 上溢就是说当softmax的输入值很大时,由于是指数函数,会导致输出过大,从而导致向上溢出。
  • 下溢与之类似,当指数函数接收一个很小的负数作为输入时候,可能会导致输出为0,在后续的使用中可能会出现除0错误,得到NAN结果。
  • 解决方法就是利用softmax的冗余性,让他们全部减去一个值a,a的选取是a=max(x)。
    在这里插入图片描述

4. argmax

<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

雁宇up

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值