【机器学习】简单线性回归

转载
https://www.cnblogs.com/shibalang/p/4859645.html
多元线性回归是最简单的机器学习模型,通过给定的训练数据集,拟合出一个线性模型,进而对新数据做出预测。

对应的模型如下:

在这里插入图片描述
n: 特征数量。

一般选取残差平方和最小化作为损失函数,对应为:

在这里插入图片描述

M:训练样本数量。

通过最小化代价损失函数,来求得 值,一般优化的方法有两种,第一是梯度下降算法(Gradient Descent),第二种是矩阵法(The normal equations)。

梯度下降算法
给一个初始值,然后逐步的迭代改变的值,是代价损失函数逐次变小,使每次都往梯度下降的方向改变:

在这里插入图片描述 α \alpha α表示下降速度。

为了求偏导数,当只有一个样本时,即

在这里插入图片描述
即:
在这里插入图片描述

当有多个训练样本时,下降梯度算法即为:
在这里插入图片描述

由于每次迭代都需要计算所有样本的残差并加和,因此此方法也叫做批下降梯度法(batch

gradient descent),当有大规模数据时,此方法不太适合,可采取它得一个变种,即每次更新权重时,不是计算所有的样本,而是选取其中一个样本进行计算梯度,这个方法叫做随机下降梯度法(stochastic gradient descent):

在这里插入图片描述

随机下降梯度法与下降梯度法对比可能收敛更快,但是可能找不到最优点而在最优点附近徘徊。

矩阵求解法
由于梯度下降算法需要多次迭代,并且需要指定下降速率,如果下降速度过快则可能错过最优点,如果过慢则需要迭代多次,因此还可选用矩阵法求解。

首先,需要定义一些用到的线性代数知识:

对于一个函数在这里插入图片描述,表示一个输入mxn的矩阵,输入为一个实数,即输入x为矩阵,则对此函数求导数为:
在这里插入图片描述

即对矩阵中每个元素求导,结果也为一个m*n的矩阵。

另外,定义矩阵的迹trace,为矩阵主对角线元素之和:

在这里插入图片描述如果A为实数a,则 tr a=a。

以下是关于矩阵迹的一些性质:
在这里插入图片描述

对于多元线性回归,将训练数据的特征作为一个矩阵:
在这里插入图片描述

同时将其对应的y值也作为一个矩阵:
在这里插入图片描述

因此,
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述求导数,且:
在这里插入图片描述

则:

在这里插入图片描述
令上式为0,则
在这里插入图片描述

以上即为矩阵法的推导,其中涉及到线性代数的知识没有证明,只要将给定的公式带入求导即可得出此结论。

矩阵法与下降梯度法对比好处是不需要多次迭代,一次计算即可得出精确结果,但当数据量过大时,即设计矩阵X过大时,对矩阵的乘法即求逆有很大计算复杂度,因此此方法适用于小规模数据。另外,用矩阵法时不需要对输入特征数据中心化。

总结
以上就是简单多元线性回归,及其对应的下降梯度算法与矩阵算法,虽然简单,但是其他一些复杂算法的基础。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值