【量化笔记】时间序列

时间序列指由有时间先后顺序组成的一组时间变量。分析时间序列的前提假设是,时间序列具有自相关性, 通过这种自相关性,从而通过过去推测未来,如果某个时间序列没有自相关性,那么根据过去推测未来就毫无意义。

自协方差

随机变量 X t X_t Xt,在时间点 k , k − l k,k-l k,kl,取之分别为 X k , X k − l X_k,X_{k-l} Xk,Xkl, l l l阶自协方差的表达式:
γ l = E [ ( X k − μ k ) ( X k − l − μ k − l ) ] = C o v ( X k , X k − l ) , l = 0 , 1 , 2... \gamma_l = \mathbb E[(X_k-\mu_k)(X_{k-l}-\mu_{k-l})]=Cov(X_k,X_{k-l}), l=0,1,2... γl=E[(Xkμk)(Xklμkl)]=Cov(Xk,Xkl),l=0,1,2...

自相关系数

ρ l = C o v ( X k , X k − l ) V a r ( X k ) = γ l γ 0 \rho_l = \frac{Cov(X_k,X_{k-l})}{Var(X_k)}=\frac{\gamma_l}{\gamma_0} ρl=Var(Xk)Cov(Xk,Xkl)=γ0γl

偏自相关系数

在计算昨天对今天的影响的时候,其实前天对昨天的影响也间接影响了今天,大前天对前天和昨天的影响也间接影响了今天。以此类推,计算t和t-1期的相关性时,不单纯是昨天的影响,也包含了之前所有各期的信息对今天的间接影响。所以为了衡量过去单期(一天)对今天的影响,我们引入偏相关性的概念,用于剔除更早之前的信息对现在的影响。

ρ l l = C o r r ( X k , X k − l ∣ X k − 1 , X k − 2 , . . . , X k − l + 1 ) \rho_ll = Corr(X_k,X_{k-l}|X_{k-1},X_{k-2},...,X_{k-l+1}) ρll=Corr(Xk,XklXk1,Xk2,...,Xkl+1)

平稳性

如果时间序列的基本特性保持不变,我们就称该时间序列是平稳的。

强平稳

{ X t } \{X_t\} {Xt}为一时间序列,对于任意正整数n,任取 t 1 , t 2 , . . . , t n ∈ T t_1,t_2,...,t_n \in T t1,t2,...,tnT, 对任意 τ \tau τ 有:

F X ( x t 1 , x t 2 , . . . x t n ) = F X ( x t 1 + τ , x t 2 + τ , . . . x t n + τ ) F_X(x_{t_1},x_{t_2},...x_{t_n})=F_X(x_{t_{1+\tau}},x_{t_{2+\tau}},...x_{t_{n+\tau}}) FX(xt1,xt2,...xtn)=FX(xt1+τ,xt2+τ,...xtn+τ)

即时间序列中任何时段的联合分布都是相同的,则称这个时间序列是请平稳的。这个条件过于苛刻,实际中很难应用。

弱平稳

假设 { X t } \{X_t\} {Xt}是一个时间序列,如果 { X t } \{X_t\} {Xt}满足如下三个条件:
(1) 任取 t ∈ T t \in T tT,有 E ( X t ) = μ \mathbb E(X_t)=\mu E(Xt)=μ,即序列的均值为常数
(2) 任取 t ∈ T t \in T tT,有 E ( X t 2 ) &lt; ∞ \mathbb E(X_t^2) &lt;\infin E(Xt2)<
(3) 任取 t ∈ T t \in T tT,对任意整数h,任意阶数l,有 γ l ( t ) = γ l ( t + h ) \gamma_l(t)=\gamma_l(t+h) γl(t)=γl(t+h),即t时点的自协方差与t+h时点的自协方差相等。也就是说,l阶自协方差不随t值改变。

一般说树间序列平稳,都是指弱平稳性。

单位根检验

如果一个序列是非平稳的,经过d次差分,可以将其转换成平稳序列,则称此序列为 I ( d ) I(d) I(d),其中I指整合(Integrated),d为整合阶数。比如:
x t = x t − 1 + ϵ t x_t=x_{t-1}+\epsilon_t xt=xt1+ϵt
其中 x 0 = 0 , ϵ t ∼ N ( 0 , σ ϵ 2 ) x_0=0, \epsilon_t \sim N(0,\sigma_\epsilon^2) x0=0,ϵtN(0,σϵ2)
可以根据计算得到:
E ( x t ) = E ( x t − 1 ) = . . . = E ( x 1 ) = E ( x 0 + ϵ 1 ) = 0 \mathbb E(x_t)=\mathbb E(x_{t-1})=...=\mathbb E(x_1)=\mathbb E(x_0+\epsilon_1)=0 E(xt)=E(xt1)=...=E(x1)=E(x0+ϵ1)=0
V a r ( x t ) = V a r ( x t − 1 ) + σ ϵ 2 = . . . = t σ ϵ 2 Var(x_t)=Var(x_{t-1})+\sigma_\epsilon^2=...=t\sigma_\epsilon^2 Var(xt)=Var(xt1)+σϵ2=...=tσϵ2
因为 x t x_t xt的方差会随和时间t发生改变,因此该时间序列是非平稳。不过 x t x_t xt经过一阶差分后 Δ x t = x t − x t − 1 = ϵ t \Delta x_t=x_t-x_{t-1}=\epsilon_t Δxt=xtxt1=ϵt,因此 x t x_t xt为非平稳的I(1)序列。
一个时间序列是否平稳可以借助之后蒜子多项式方差的根来判断。滞后算子L,比如对时间序列{x_t}运用滞后算子可得 L x t = x t − 1 , L 2 x t = x t − 2 , . . . Lx_t=x_{t-1}, L^2x_t=x_{t-2},... Lxt=xt1,L2xt=xt2,...

将一个序列 y t y_t yt一般化的表示为
y t = γ + ρ 1 y t − 1 + ρ 2 y t − 2 + . . . + ρ p y t − p + ϵ t y_t = \gamma + \rho_1y_{t-1}+ \rho_2y_{t-2}+ ... + \rho_p y_{t-p}+\epsilon_t yt=γ+ρ1yt1+ρ2yt2+...+ρpytp+ϵt
ϵ t ∼ I I D ( 0 , σ ϵ 2 ) \epsilon_t \sim IID(0,\sigma_\epsilon ^2) ϵtIID(0,σϵ2)
借助滞后算子,将上面的模型改写成:
y t = γ + ρ 1 L y t + ρ 2 L 2 y t + . . . + ρ p L p y t + ϵ t y_t = \gamma +\rho_1Ly_t+\rho_2 L^2y_t+ ...+\rho_pL^py_t+\epsilon_t yt=γ+ρ1Lyt+ρ2L2yt+...+ρpLpyt+ϵt
γ + ϵ t = ( 1 − ρ 1 L − ρ 2 L 2 − . . . − ρ p L p ) y t \gamma +\epsilon_t = (1-\rho_1L -\rho_2L^2-...-\rho_pL^p)y_t γ+ϵt=(1ρ1Lρ2L2...ρpLp)yt
对应的滞后算子多项式方程为:
1 − ρ ( L ) = ( 1 − ρ 1 L − ρ 2 L 2 − . . . − ρ p L p ) = 0 1-\rho(L)=(1-\rho_1L -\rho_2L^2-...-\rho_pL^p)=0 1ρ(L)=(1ρ1Lρ2L2...ρpLp)=0

如果 1 − ρ ( L ) = 0 1-\rho(L)=0 1ρ(L)=0所有根的绝对值都大于1,那么时间序列 y t y_t yt为平稳的时间序列。如果 1 − ρ ( L ) = 0 1-\rho(L)=0 1ρ(L)=0存在单位根,即L=1,那么时间序列 y t y_t yt就是非平稳,对该时间序列的未来值的预测就难以进行

常见的单位根检验的方法有DF(Dickey-Fuller Test)检验,ADF检验(Augmented Dickey_Fuller Test),PP检验(Phillips-Perron test)。

白噪声

如果一个随机过程中任意时点t的变量 X t X_t Xt的均值和方差,协方差分别满足以下公式:
E ( X t ) = 0 \mathbb E(X_t)=0 E(Xt)=0
V a r ( X t ) = σ 2 Var(X_t)=\sigma^2 Var(Xt)=σ2
γ l = 0 , l &gt; 0 \gamma_l=0,l&gt;0 γl=0,l>0
则称这个随机过程为白噪声过程。白噪声过程中各期变量之间的协方差为0,也就是白噪声过程是没有相关性的。这种时间序列也可以称为纯随机序列。
如果白噪声过程中的个变量独立同分布,且都服从正态分布,则该序列被称为高斯白噪声过程。根据定义,高斯白噪声过程是强平稳的时间序列,而且各期之间不仅不相关,而且互相独立。

白噪声检验

通常使用Ljung-Box检验,检验的原假设为所检验的序列是纯随机序列,Q统计量为:
Q ( m ) = n ( n + 2 ) ∑ k = 1 m ρ k 2 n − k ∼ χ m 2 Q(m) = n(n+2)\sum _{k=1}^m \frac{\rho_k^2}{n-k} \sim \chi^2_m Q(m)=n(n+2)k=1mnkρk2χm2
其中, ρ k 2 \rho^2_k ρk2是序列的k阶自相关系数,n是整个序列中观测值的个数,m是设定的滞后阶数。
在检验一个时间序列在m界内是否是白噪声,只有当Q(1),Q(2),…,Q(m)这m个Q统计量都小于对应的 χ 2 \chi^2 χ2分布的临界值时,才说嘛这个序列在所检验的m阶内是纯随机序列。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值