Graph 探索之DeepWalk,Line,Node2Vec
网络表示学习**(Network Representation Learning,NRL),也称为图嵌入法(Graph Embedding Method,GEM):用低维、稠密、实值的向量表示网络中的节点(含有语义关系,利于计算存储,不用再手动提特征(自适应性),且可以将异质信息投影到同一个低维空间中方便进行下游计算)。也就是说这三种方法都是拿来给图结构提取embedding的。
Network Embedding算法主要有经历了以下三代的发展:
第一代:基于矩阵特征向量(谱聚类)
第二代:基于Random Walk(Deep Walk & Node2Vec)
第二代:基于Deep Learning(SDNE, GCN, GraphSAGE)
一、DeepWalk
总体步骤就是Network/graph ---------random walk ---------得到节点序列-------- skip-gram
其中主要想说的是random walk这里主要是依据边权重进

本文介绍了图表示学习的方法,包括DeepWalk的随机游走与skip-gram模型,Line的一阶和二阶邻近关系,以及Node2Vec的有偏随机游走和优化目标。DeepWalk侧重基于边权重的随机游走,Line结合一阶和二阶邻近度学习embedding,而Node2Vec通过调整随机游走策略改进了DeepWalk。
最低0.47元/天 解锁文章

852

被折叠的 条评论
为什么被折叠?



