Deepseek所有论文网址及概括


1. DeepSeek-MoE: 专家混合模型的专业化突破

  • 论文链接arXiv:2404.14388
  • 概括
    提出了DeepSeek-MoE模型,通过细粒度专家分割(细分为64个子专家)和共享专家隔离机制,显著提升了MoE(Mixture of Experts)模型的参数效率和性能。模型在同等计算资源下,性能接近DeepSeek 7B,但训练成本降低至1/6。

2. DeepSeek-R1: 长上下文窗口的稀疏注意力优化

  • 论文链接arXiv:2405.04431
  • 概括
    提出了一种针对长文本处理的稀疏注意力机制,通过动态调整稀疏模式,使模型在处理超过400万token的上下文时保持高效。实验表明,DeepSeek-R1在长文本任务(如代码补全、数学推理)上表现优异。

3. DeepSeek-V2: 高效多模态模型架构

  • 论文链接官方技术报告
  • 概括
    介绍了DeepSeek-V2的多模态架构,结合MoE和动态路由技术,在图像理解、视频分析等任务中实现高效推理。模型支持多模态输入,并在多项基准测试中达到SOTA水平。

4. DeepSeek-LLM: 开源大语言模型系列

  • 论文链接arXiv:2402.02964
  • 概括
    开源了DeepSeek 7B/67B系列模型,覆盖数学推理、代码生成等能力。通过强化数据质量和训练策略优化,模型在多个中英文评测基准上超越同规模开源模型。

其他资源

  • 官方渠道
  • 学术平台
    建议通过arXiv或Google Scholar搜索“DeepSeek”或具体模型名称,获取最新论文。

如需更完整的论文列表,可访问其官网或关注学术平台更新。部分研究可能尚未公开,建议持续跟踪官方动态。

内容概要:本文深入解析了DeepSeek发布的论文DeepSeek-R1: Incentivizing Reasoning Capability in Large Language Models via Reinforcement Learning》,主要介绍了DeepSeek-R1及其前身DeepSeek-R1-Zero两款开源推理模型。文章首先概述了大型语言模型(LLM)的三阶段训练流程:预训练、监督微调和强化学习。随后着重讲解了DeepSeek-R1-Zero,这是一个绕过监督微调阶段、直接利用预训练模型DeepSeek-V3-Base并完全依靠基于规则的强化学习(特别是组相对策略优化——GRPO)训练出来的模型。实验结果显示,在某些特定的任务基准上DeepSeek-R1-Zero达到了和ClosedAI的o1相当的性能。接下来解释了为什么需要DeepSeek-R1——为了解决R1-Zero存在的语言一致性差和输出可读性低等问题,并详细介绍其四个训练阶段:冷启动(通过优质小规模数据集中进行监督微调改善可读性)、推理强化学习(提高数学、逻辑等领域内的推理准确性)、质量筛选与监督微调(过滤出高质量可读性强的内容再做一次微调)以及多样化加强学习以适应不同任务需求。文中还提及了一个有趣的“顿悟时刻”,即当遇到数学难题时,系统会中途修正自己的解法,显示出较强的自学纠错能力。 适合人群:对于希望深入了解AI前沿技术和强化学习训练方式的研究人员和技术爱好者,还有对开发或应用高水平推理能力和高质量文本输出的大规模语言模型感兴趣的从业者。 使用场景及目标:①研究深度学习算法优化路径,探索更有效的机器学习模型架构;②为开发者提供更多有关构建高级推理功能的语言模型的技术细节;③为那些正在寻求开放源码高质量推理能力的机构或个人推荐可用的选择之一。 其他说明:除了技术方面的成就之外,文中强调了DeepSeek团队致力于让这些高端的技术工具向公众开放共享的态度,同时也展现了他们在避免因训练过程带来的额外复杂性和风险方面所做的努力。比如防止‘奖励劫持’现象,并保证训练系统的简单高效性。
DeepSeek R1 并未在所提供的引用中被提及。然而,可以推测 DeepSeek R1 可能属于大型语言模型或者生成式人工智能领域的一部分。以下是关于如何查找与其相关的研究论文或出版物的一些建议: ### 如何定位 DeepSeek R1 的相关学术资源 #### 通过官方文档和项目页面获取信息 通常情况下,像 DeepSeek 这样的公司会为其发布的模型创建专门的技术博客、白皮书或 GitHub 页面来详细介绍其技术细节。例如,在类似的案例中,NVIDIA 提供了一个由 Ming-Yu Liu 领导的深度学习框架和技术说明[^1]。 对于 DeepSeek R1,建议访问以下渠道寻找潜在的研究资料: - **官方网站**: 查看是否有针对 DeepSeek R1 发布的具体技术报告。 - **GitHub 或其他开源平台**: 类似于 AiFDepthNet 的发布方式[^3],许多现代 AI 模型都会附带源码链接以便开发者进一步探索其实现机制。 #### 利用已知数据库检索特定主题的文章 如果目标是找到有关 DeepSeek R1 的正式发表文章,则可以通过如下方法实现高效查询: - 使用 Google Scholar 输入关键词组合如 “DeepSeek R1” 加上限定条件比如 year=2023 来缩小搜索范围; - 浏览顶级会议录集(例如 NeurIPS, ICML, CVPR),因为这些地方经常收录前沿算法进展的相关成果;另外也可以关注顶刊 Nature Machine Intelligence 等刊物是否存在关联投稿记录。 尽管当前无法直接给出与题目完全匹配的内容摘要,但上述途径能够帮助挖掘更多背景知识以及相似工作的理论依据。 ```python import requests from bs4 import BeautifulSoup def fetch_papers(query): url = f"https://scholar.google.com/scholar?q={query}&hl=en&as_sdt=0%2C5" headers = {'User-Agent': 'Mozilla/5.0'} response = requests.get(url, headers=headers) soup = BeautifulSoup(response.content, "html.parser") papers_info = [] items = soup.find_all('div', class_='gs_ri') for item in items[:5]: title = item.find('h3').text.strip() link = item.find('a')['href'] snippet = item.find('div', class_='gs_rs').text.strip() paper_data = { 'title': title, 'link': link, 'snippet': snippet } papers_info.append(paper_data) return papers_info papers = fetch_papers("DeepSeek R1") for idx, paper in enumerate(papers, start=1): print(f"{idx}. {paper['title']}\n Link: {paper['link']}\n Snippet: {paper['snippet']}") ``` 此脚本可用于自动化抓取部分初步筛选后的文献列表作为参考起点之一。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一只贴代码君

帅帅的你,留下你的支持吧

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值