deepseek各个版本及论文

以下是 DeepSeek 系列模型的主要版本及其相关论文列表,每条记录均附上论文地址:


  1. DeepSeek LLM
    发布时间:2024 年 1 月 5 日

论文标题:DeepSeek LLM: Scaling Open-Source Language Models with Longtermism

主要内容:

基于 Transformer 架构,采用分组查询注意力(GQA)优化推理成本。

支持多步学习率调度器,提升训练效率。

在预训练和对齐(监督微调与 DPO)方面进行了创新。

论文地址:https://arxiv.org/abs/2401.0295420


  1. DeepSeekMoE
    发布时间:2024 年 1 月 11 日

论文标题:DeepSeekMoE: Towards Ultimate Expert Specialization in Mixture-of-Experts Language Models

主要内容:

提出细粒度专家分割(Fine-Grained Expert Segmentation)和共享专家隔离(Shared Expert Isolation)策略。

通过更灵活的专家组合提升模型性能,同时保持计算成本不变。

论文地址:https://arxiv.org/abs/2401.060662


  1. DeepSeek-V2
    发布时间:2024 年 5 月

论文标题:DeepSeek-V2: A Strong, Eco

### 如何润色 DeepSeek 模型相关的学术论文 撰写高质量的学术论文不仅需要清晰的研究思路,还需要精确的语言表达和逻辑结构。对于涉及 DeepSeek 的学术论文,可以通过以下几个方面提升其质量: #### 1. 提升语言准确性 为了使论文中的技术术语更加精准,应仔细校对并优化每一处描述。例如,在讨论强化学习激励推理能力的部分时,可以采用更专业的表述方式[^3]。通过调整句式,确保每句话都能准确传达作者意图。 ```python # 原始版本 We used reinforcement learning to improve the reasoning capability of our model. # 改进后的版本 The incorporation of reinforcement learning techniques was instrumental in enhancing the reasoning capabilities within our developed model. ``` 上述代码展示了如何将简单的陈述转化为更具学术气息的文字形式。 #### 2. 加强论证力度 在阐述实验设计过程中,利用具体实例说明 DeepSeek 是如何辅助完成准实验与干预研究框架构建工作的非常必要[^1]。这有助于读者更好地理解该工具的实际应用价值及其独特优势所在之处。 #### 3. 注重细节描写 为了让整篇文章读起来生动有趣而不枯燥乏味,则需注意对某些特定环节加以细致刻画[^2]。比如当提到某项功能实现原理或者操作流程时, 可适当增加一些背景知识介绍以及可能遇到的问题解决方案等内容。 #### 4. 结构化组织全文 良好的篇章布局能够帮助审稿人快速抓住重点信息。因此建议按照标准模板安排各个章节顺序——摘要、引言、方法论、结果分析到最后结论部分均不可忽视任何一个步骤的重要性。 综上所述,通过对以上几个方面的改进措施实施到位之后,相信您的有关于DeepSeek主题下的科研成果将会得到更好的展现效果!
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值