其实,这篇文章跟我的yolov4那篇文章有些重复,但是想着好歹把代码写写改了一些时间,还是写下来,纪念一下吧。哎,简单说下吧,我们将我们要训练的数据全部放在JPEGImages这个文件夹下面,然后把这些照片的对应的txt标记信息也放在一个文件夹下面,然后就可以使用下面的代码将数据集转化为voc格式的数据集了,直接看代码吧。
'''author:nike hu'''
# -*- coding: utf-8 -*-
import shutil
import os
import cv2
headstr = """\
<annotation>
<folder>VOC2007</folder>
<filename>%06d.jpg</filename>
<source>
<database>My Database</database>
<annotation>PASCAL VOC2007</annotation>
<image>flickr</image>
<flickrid>NULL</flickrid>
</source>
<owner>
<flickrid>NULL</flickrid>
<name>company</name>
</owner>
<size>
<width>%d</width>
<height>%d</height>
<depth>%d</depth>
</size>
<segmented>0</segmented>
"""
objstr = """\
<object>
<name>%s</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>%d</xmin>
<ymin>%d</ymin>
<xmax>%d</xmax>
<ymax>%d</ymax>
</bndbox>
</object>
"""
tailstr = '''\
</annotation>
'''
def writexml(idx, head, bbxes, tail):
filename = ("Annotations/%06d.xml" % (idx))
f = open(filename, "w")
f.write(head)
for bbx in bbxes:
f.write(objstr % (bbx[-1], bbx[0], bbx[1], bbx[0] + bbx[2], bbx[1] + bbx[3]))
f.write(tail)
f.close()
def clear_dir():
if shutil.os.path.exists(('Annotations')):
shutil.rmtree(('Annotations'))
if shutil.os.path.exists(('ImageSets')):
shutil.rmtree(('ImageSets'))
# if shutil.os.path.exists(('JPEGImages')): # 因为我们已经将所有图片放到这个文件夹里面了,所以不需要再创建了
# shutil.rmtree(('JPEGImages'))
shutil.os.mkdir(('Annotations'))
shutil.os.makedirs(('ImageSets/Main'))
# shutil.os.mkdir(('JPEGImages'))
def excute_datasets():
'''在main文件夹下面要创建四个文件,trainval是总样本的百分之九十,train是总数据的百分之七十,val是总数据样本的百分之20,剩下的百分之10是测试样本'''
ftrainval = open(('ImageSets/Main/' + 'trainval' + '.txt'), 'a')
ftrain = open(('ImageSets/Main/' + 'train' + '.txt'), 'a')
fval = open(('ImageSets/Main/' + 'val' + '.txt'), 'a')
ftest = open(('ImageSets/Main/' + 'test' + '.txt'), 'a')
images = './JPEGImages/' # 这是存储图片的位置
txtfile = './label/' # 这个是是存储标记信息的文件夹
txtlist = os.listdir(txtfile)
lenfile = len(txtlist) # 这个是标记的信息的总的文件数量
count = 1 # 统计正在处理的数量
for txtname in txtlist:
txt_path = os.path.join(txtfile, txtname)
image_path = os.path.join(images, txtname.split('.')[0] + '.png') # 这里是图片的路径
im = cv2.imread(image_path) # 读取图片
if im is None: # 如果不存在这张照片,跳过
continue
head = headstr % (int(txtname.split('.')[0]), im.shape[1], im.shape[0], im.shape[2]) # xml文件的头部分
boxes = []
with open(txt_path, 'r') as f:
while True:
txt_content = f.readline().split(' ')
if txt_content[0] == '':
break
label_name = txt_content[0]
if label_name == 'Misc' or label_name == 'DontCare': # 如果是这两类就去掉
continue
box = [float(x) for x in txt_content[4:8]] # 这个是坐标
box.append(label_name) # 把每个坐标对应的标签加入
boxes.append(box)
writexml(int(txtname.split('.')[0]), head, boxes, tailstr)
if count < 0.9 * lenfile: # 总样本的百分之90部分存到trainval
ftrainval.write('%06d\n' % (int(txtname.split('.')[0])))
if count < 0.7 * lenfile: # 总样本的百分之70存入train
ftrain.write('%06d\n' % (int(txtname.split('.')[0])))
else: # 在0.7到0.9之间的数据存入val文件
fval.write('%06d\n' % (int(txtname.split('.')[0])))
else:
ftest.write('%06d\n' % (int(txtname.split('.')[0])))
count += 1
ftrain.close() # 运行的时候出现过没有存进去的情况,原因是数据在内存中,还没有存在磁盘中,一般程序运行完会将数据放到磁盘中,或者用close语句
ftest.close()
ftrainval.close()
fval.close()
if __name__ == '__main__':
clear_dir()
idx = excute_datasets()
print('Complete...')
就这样吧,没啥好说的,在yolov4里面已经详细说了这样做的思路。
2020 5.1