1、统计学习路线
- 模型设计->训练->预测
2、统计学习三要素
- 模型
- 策略:按照什么样的准则学习
- 用经验风险(训练集的平均损失)估计期望风险
- 结构化风险:经验损失(经验风险)容易造成过拟合,所以
结构化风险=经验风险+正则项(表示模型复杂度)
- 算法
3、模型评估和模型选择
- 训练误差:模型关于训练集的平均误差
- 验证误差:模型在验证集(训练集+测试集)上的误差 选最优模型
- 测试误差:模型在测试集上误差 对学习方法的评估
4、正则化和交叉验证
1、统计学习路线
2、统计学习三要素
结构化风险=经验风险+正则项(表示模型复杂度)
3、模型评估和模型选择
4、正则化和交叉验证