目录
插值算法的介绍及其在数学建模中的应用
%本文根据清风数学建模课程插值算法及相关资料总结而成,仅供学习使用
%本文参考了(分段插值 - 百度文库),对介绍的顺序及内容进行了改进
%由于本文仅仅是简要介绍插值算法在建模中的应用,因此样条插值的可微性证明等各种复杂繁琐的部分在本文中不再引入
%本文仅介绍一维数据的插值,多维数据的插值方法与一维插值类似
一、插值的介绍及其作用
数模比赛中,常常需要根据已知的样本点进行数据的处理和分析,而有时候现有数据较少或数据不全,不足以支撑分析的进行,这时就需要使用插值法“模拟产生”一些新的但又比较靠谱的值来满足需求,这就是插值的作用。
%在直观上,插值就是找到一个连续函数使其经过每个样本点
%插值法还可用于短期的预测问题
(插值与拟合经常会被弄混,为了区分,这里简要介绍一下拟合:即找到一个函数,使得该函数在最小二乘的意义下与已知样本点的总体差别最小,该函数不一定要经过样本点。通常情况下,拟合要求已知样本点的数据较多,当数据较少时不适用)
二、插值法原理
三、插值法的分类
%注:下面的1、2、3、4 并非是并列关系,几个部分之间也有