插值算法的介绍及其在数学建模中的应用

本文介绍了插值算法在数学建模中的应用,包括普通多项式插值、分段低次插值、三次样条插值和分段三次埃尔米特插值。特别讨论了龙格现象以及如何通过分段低次和样条插值避免它。在实际建模中,三次样条和分段三次埃尔米特插值因其平滑性和灵活性常被使用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

插值算法的介绍及其在数学建模中的应用

一、插值的介绍及其作用

二、插值法原理

三、插值法的分类

1、普通多项式插值

2、分段低次插值

3、(三次)样条插值

4、分段三次埃尔米特(Hermite)插值


插值算法的介绍及其在数学建模中的应用

%本文根据清风数学建模课程插值算法及相关资料总结而成,仅供学习使用
%本文参考了(分段插值 - 百度文库),对介绍的顺序及内容进行了改进
%由于本文仅仅是简要介绍插值算法在建模中的应用,因此样条插值的可微性证明等各种复杂繁琐的部分在本文中不再引入
%本文仅介绍一维数据的插值,多维数据的插值方法与一维插值类似

一、插值的介绍及其作用

数模比赛中,常常需要根据已知的样本点进行数据的处理和分析,而有时候现有数据较少或数据不全,不足以支撑分析的进行,这时就需要使用插值法“模拟产生”一些新的但又比较靠谱的值来满足需求,这就是插值的作用。

%在直观上,插值就是找到一个连续函数使其经过每个样本点
%插值法还可用于短期的预测问题

(插值与拟合经常会被弄混,为了区分,这里简要介绍一下拟合:即找到一个函数,使得该函数在最小二乘的意义下与已知样本点的总体差别最小,该函数不一定要经过样本点。通常情况下,拟合要求已知样本点的数据较多,当数据较少时不适用)

二、插值法原理

 

三、插值法的分类

%注:下面的1、2、3、4 并非是并列关系,几个部分之间也有

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值