torch.autograd.detect_anomaly() 工具的使用(记录)

先放上使用方法:

import torch

# 正向传播时:开启自动求导的异常侦测
torch.autograd.set_detect_anomaly(True)

# 反向传播时:在求导时开启侦测
with torch.autograd.detect_anomaly():
    loss.backward()

是在这里找到的方法

主要在此记录一下我的找bug过程

跑新加的模块代码的时候,pytorch报以下错误

RuntimeError: Trying to backward through the graph a second time (or directly access saved tensors after they have already been freed). Saved intermediate values of the graph are freed when you call .backward() or autograd.grad(). Specify retain_graph=True if you need to backward through the graph a second time or if you need to access saved tensors after calling backward.

他说我进行了两次梯度回传,或者是在backward的时候,有中间变量已经被释放了。

因为是加了新模块才导致出现的问题,而且新模块中并没有backward,所以排除是两次backward的问题。

然后我就一顿好找啊。。改改这行代码,换换那行代码,看看到底是哪里出现了问题,愣是没找到。

然后使用了 detect_anomaly() 来检测。

由于我的基模型使用了pytorch lighting,所以我就在trainer.fit(model, data)前加了正向传播的异常检测; 以及在training_step中添加了反向传播的侦测,而且这里loss.backward()是需要改成loss.backward(retain_graph=True),是因为pytorch lighting本身会backward一次,你再加一次就需要保持计算图的存在。

然后它就在前向过程中检测到一个变量计算有问题。我一开始还不信,说怎么会这里出问题。然后我输出了其中一个变量shape发现,它在上一个step中计算完之后放在一个列表里没有被清除,导致后续计算又拿这个值去计算了loss。这样就导致这个值对应的计算图已经不在了,但还是拿了这个值计算了loss,就报以上的错误了。

简单总结一下,使用这个detect_anomaly(),虽然不能十分明显的告诉你哪里出了问题,但也帮你减少了范围,提高了找代码效率。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值