先放上使用方法:
import torch
# 正向传播时:开启自动求导的异常侦测
torch.autograd.set_detect_anomaly(True)
# 反向传播时:在求导时开启侦测
with torch.autograd.detect_anomaly():
loss.backward()
是在这里找到的方法
主要在此记录一下我的找bug过程
跑新加的模块代码的时候,pytorch报以下错误
RuntimeError: Trying to backward through the graph a second time (or directly access saved tensors after they have already been freed). Saved intermediate values of the graph are freed when you call .backward() or autograd.grad(). Specify retain_graph=True if you need to backward through the graph a second time or if you need to access saved tensors after calling backward.
他说我进行了两次梯度回传,或者是在backward的时候,有中间变量已经被释放了。
因为是加了新模块才导致出现的问题,而且新模块中并没有backward,所以排除是两次backward的问题。
然后我就一顿好找啊。。改改这行代码,换换那行代码,看看到底是哪里出现了问题,愣是没找到。
然后使用了 detect_anomaly() 来检测。
由于我的基模型使用了pytorch lighting,所以我就在trainer.fit(model, data)前加了正向传播的异常检测; 以及在training_step中添加了反向传播的侦测,而且这里loss.backward()是需要改成loss.backward(retain_graph=True),是因为pytorch lighting本身会backward一次,你再加一次就需要保持计算图的存在。
然后它就在前向过程中检测到一个变量计算有问题。我一开始还不信,说怎么会这里出问题。然后我输出了其中一个变量shape发现,它在上一个step中计算完之后放在一个列表里没有被清除,导致后续计算又拿这个值去计算了loss。这样就导致这个值对应的计算图已经不在了,但还是拿了这个值计算了loss,就报以上的错误了。
简单总结一下,使用这个detect_anomaly(),虽然不能十分明显的告诉你哪里出了问题,但也帮你减少了范围,提高了找代码效率。