【概率论与数理统计】期末复习

参考本书

第一章 随机事件

  • AB表示的是A和B同时发生的概率,也就是说,当事件A和事件B同时发生时,AB的概率会被计算。
  • A并B则表示A或者B有一个或两个发生的概率,也就是说,只要事件A或事件B中的任何一个发生,或者两者都发生,A并B的概率就会被计算

补事件的运算规律:
对偶律:
A ∪ B ‾ = A ˉ B ˉ \overline{A\cup B}= \bar{A}\bar{B} AB=AˉBˉ
A B ‾ = A ‾ ∪ B ‾ \overline{\mathrm{AB}}\quad=\overline{\mathrm{A}}\cup\overline{\mathrm{B}} AB=AB

加法公式: P ( A ∪ B ) = P ( A ) + P ( B ) − P ( A B ) P(A\cup B)=P(A)+P(B)-P(AB) P(AB)=P(A)+P(B)P(AB) ,A,B相互独立
P ( A ∪ B ) = P ( A ) + P ( B ) P(A\cup B)=P(A)+P(B) P(AB)=P(A)+P(B) ,A,B互斥

减法公式: P ( A − B ) = P ( A ) − P ( A B ) = P ( A B ‾ ) P(A-B)=P(A)-P(AB)=P(A\overline{B}) P(AB)=P(A)P(AB)=P(AB)
乘法公式: P ( A B ) = P ( B ∣ A ) P ( A ) P(AB)=P(B\mid A)P(A) P(AB)=P(BA)P(A)

两大概率模型

  1. 古典概型
    特点:数数,学会计数方法
    排列,组合,可重复排列
    有一个关键是,在抽签前概率是一致的

  2. 几何概型
    其实古典概型有点像离散型随机变量,几何概型有点像连续性随机变量

常考点:

  1. 全概率
    P ( B ) = P ( A 1 ) P ( B ∣ A 1 ) + P ( A 2 ) P ( B ∣ A 2 ) + … + P ( A n ) P ( B ∣ A n ) P(B)=P(A_1)P(B|A_1)+P(A_2)P(B|A_2)+\ldots+P(A_n)P(B|A_n) P(B)=P(A1)P(BA1)+P(A2)P(BA2)++P(An)P(BAn)
    例题:
    已知甲袋中有4只红球,3只白球;乙袋中有2只红球,5只白球。从甲袋随机取一个放到乙口袋,再从乙袋中随机取一球,该球是红球的概率是多少
    解答:设事件 A 1 \mathrm{A}_{1} A1为在甲袋拿到的是红球,事件 A 2 \mathrm{A}_{2} A2为在甲袋拿到的是白球,事件B为从乙袋取到红球
    P ( B ) = P ( A 1 ) P ( B ∣ A 1 ) + P ( A 2 ) P ( B ∣ A 2 ) = 7 4 × 8 3 + 7 3 × 8 2 = 28 9 \mathrm{P(B)=P(}A_1)\mathrm{P(B|A_1)+P(A_2)P(B|A_2)=}_7^4\times_8^3+_7^3\times_8^2=_{28}^9 P(B)=P(A1)P(B∣A1)+P(A2)P(B∣A2)=74×83+73×82=289
  2. 贝叶斯
    P ( A i ∣ B ) = P ( A i ) P ( B ∣ A i ) ∑ j = 1 n P ( A j ) P ( B ∣ A j ) = P ( A i ) P ( B ∣ A i ) P ( A 1 ) P ( B ∣ A 1 ) + … + P ( A n ) P ( B ∣ A n ) P(A_i|B)=\frac{P(A_i)P(B|A_i)}{\sum_{j=1}^nP(A_j)P(B|A_j)}=\frac{P(A_i)P(B|A_i)}{P(A_1)P(B|A_1)+\ldots+P(A_n)P(B|A_n)} P(AiB)=j=1nP(Aj)P(BAj)P(Ai)P(BAi)=P(A1)P(BA1)++P(An)P(BAn)P(Ai)P(BAi)

「一个模型」教你搞定贝叶斯和全概率公式_哔哩哔哩_bilibili
(这个up主讲得比较透彻,公式也是用它的)

例题:贝叶斯公式及例题_贝叶斯公式例题-CSDN博客

第二章:随机变量

连续型随机变量X的概率密度的两个性质:
f ( x ) > 0 f(x)>0 f(x)>0 ,非负性
∫ − ∞ + ∞ f ( x ) d x = 1 \int_{-\infty}^{+\infty}f(x)dx=1 +f(x)dx=1 ,归一性

第三章:随机向量

二维连续型随机变量的边缘密度(因为是定积分所以会考)
f X ( x ) = ∫ − ∞ + ∞ f ( x , y ) d y f_X(x)=\int_{-\infty}^{+\infty}f(x,y)dy fX(x)=+f(x,y)dy
f Y ( y ) = ∫ − ∞ + ∞ f ( x , y ) d x f_Y(y)=\int_{-\infty}^{+\infty}f(x,y)dx fY(y)=+f(x,y)dx

第四章:数字特征

常用的分布类型的期望和方差(最好背下来)
在这里插入图片描述

来源:概率论基础 —— 8.数学期望、方差、协方差_期望方差协方差-CSDN博客

期望性质
E ( C ) = C E ( a X + b ) = a E X + b E ( X ± Y ) = E X ± E Y \begin{aligned}&E(C)=C\\&E(aX+b)=aEX+b\\&E(X\pm Y)=EX\pm EY\end{aligned} E(C)=CE(aX+b)=aEX+bE(X±Y)=EX±EY
X,Y相互独立,则 E ( X Y ) = E X E Y E(XY)=EXEY E(XY)=EXEY ![[Pasted image 20240624152201.png]]
方差的性质
D ( C ) = 0 D ( a X + b ) = a 2 D X D ( X ± Y ) = D X + D Y ± 2 c o v ( X , Y ) \begin{aligned} &D(C)=0 \\ &D(aX+b)=a^{2}DX \\ &D(X\pm Y)=DX+DY\pm2\mathrm{cov}(X,Y) \end{aligned} D(C)=0D(aX+b)=a2DXD(X±Y)=DX+DY±2cov(X,Y) 协方差的性质
cov ⁡ ( X , Y ) = E ( X Y ) − E X E Y D ( X ± Y ) = D X + D Y ± 2 c o v ( X , Y ) cov ⁡ ( X , Y ) = cov ⁡ ( Y , X ) cov ⁡ ( X , X ) = D X cov ⁡ ( X , C ) = 0 cov ⁡ ( a X , b Y ) = a b cov ⁡ ( X , Y ) cov ⁡ ( X 1 + X 2 , Y ) = cov ⁡ ( X 1 , Y ) + cov ⁡ ( X 2 , Y ) \begin{aligned}&\operatorname{cov}(X,Y)=E(XY)-EXEY\\&D(X\pm Y)=DX+DY\pm2\mathrm{cov}(X,Y)\\&\operatorname{cov}(X,Y)=\operatorname{cov}(Y,X)\\&\operatorname{cov}(X,X)=DX\\&\operatorname{cov}(X,C)=0\\&\operatorname{cov}(aX,bY)=ab\operatorname{cov}(X,Y)\\&\operatorname{cov}(X_1+X_2,Y)=\operatorname{cov}(X_1,Y)+\operatorname{cov}(X_2,Y)\end{aligned} cov(X,Y)=E(XY)EXEYD(X±Y)=DX+DY±2cov(X,Y)cov(X,Y)=cov(Y,X)cov(X,X)=DXcov(X,C)=0cov(aX,bY)=abcov(X,Y)cov(X1+X2,Y)=cov(X1,Y)+cov(X2,Y)

第五章:极限定理

正态分布求概率一般是标准化和对称性

  1. 切比雪夫不等式: P { ∣ X − E ( X ) ≥ ε ∣ } ≤ D ( X ) ε 2 P\left\{\left|X-E\left(X\right)\geq\varepsilon\right|\right\}\leq\frac{D\left(X\right)}{\varepsilon^2} P{XE(X)ε}ε2D(X)
    还有一个是这个,其实是相对的: P { ∣ X − E ( X ) < ε ∣ } ≥ 1 − D ( X ) ε 2 P\left\{\left|X-E\left(X\right)<\varepsilon\right|\right\}\geq1-\frac{D\left(X\right)}{\varepsilon^{2}} P{XE(X)<ε}1ε2D(X)
    例题讲解:切比雪夫不等式及其应用_哔哩哔哩_bilibili

  2. 辛钦大数定律
    1 n ∑ i = 1 n X i → p 1 n ∑ i = 1 n E X i ( n → ∞ ) \frac1n\sum_{i=1}^nX_i\overset{p}{\to}\frac1n\sum_{i=1}^nEX_i(n\to\infty) n1i=1nXipn1i=1nEXi(n) ,依概率收敛于
    课时5 大数定律与中心极限定理_哔哩哔哩_bilibili

  3. 棣莫弗-拉普拉斯中心极限定理
    随机变量 X n ∼ B ( n , p ) X_{n}\sim B(n,p) XnB(n,p) ,n=1.2.3…,则对任意实数。有
    lim ⁡ n → + ∞ P { X n − n p n p ( 1 − p ) ≤ x } = Φ ( x ) \lim_{n\to+\infty}P\left\{\frac{X_n-np}{\sqrt{np(1-p)}}\leq x\right\}=\Phi(x) limn+P{np(1p) Xnnpx}=Φ(x)
    X 1 + X 2 + . . . + X n = ∑ i = 1 n X i ∼ N ( n μ , n σ 2 ) X_1+X_2+...+X_n=\sum_{i=1}^nX_i\sim N\Big(n\mu,n\sigma^2\Big) X1+X2+...+Xn=i=1nXiN(nμ,nσ2)
    一般要标准化,然后 P ( a ≤ Z ≤ b ) = Φ ( b ) − Φ ( a ) P(a\leq Z\leq b)=\Phi(b)-\Phi(a) P(aZb)=Φ(b)Φ(a) 这个知识点要涉及到连续型随机变量的概率计算
    第六章:样本与统计量

第六章:样本与统计量

样本k阶原点矩: A k = 1 n ∑ i = 1 n X i k , k = 1 , 2 , A 1 = X ‾ A_{k}=\frac{1}{n}\sum_{i=1}^{n}X_{i}^{k},k=1,2,A_{1}=\overline{X} Ak=n1i=1nXik,k=1,2,A1=X
样本k阶中心矩: B k = 1 n ∑ i = 1 n ( X i − X ‾ ) k , k = 1 , 2 , B 2 = n − 1 n S 2 ≠ S 2 B_k=\frac1n\sum_{i=1}^n(X_i-\overline{X})^k,k=1,2,B_2=\frac{n-1}nS^2\neq S^2 Bk=n1i=1n(XiX)k,k=1,2,B2=nn1S2=S2

正态总体的样本均值与样本方差的分布:
![[概率论与数理统计-2.png]]

第七章:参数估计

矩估计:
就是令总体均值等于样本均值,根据这一等式 E ( X ) = X ‾ E(X)=\overline{X} E(X)=X 解出未知参数
矩估计值 θ ^ \hat{\theta} θ^ 记得要戴个帽子,最大似然函数也是
要区分离散型还是连续型,连续型求矩估计的时候没有样本均值,就用样本均值这个统计量等于总体均值
最大似然估计:
首先构造一个似然函数,然后对这个似然函数求驻点,就能求得最大似然函数估计量
离散型构造似然函数就概率连乘,连续型构造就密度连乘
估计量得评优准则:
会简单的考一下无偏估计量 E ( θ ^ ) = θ E(\hat{\theta})=\theta E(θ^)=θ, 还有就是判断哪个更有效,跟方差差不多
正态总体的区间估计:
一般是求 1 − α 1-\alpha 1α的置信区间,公式如下:
![[概率论与数理统计.png]]

来源:[概率笔记 P07:参数估计 - ixtwuko - 博客园 (cnblogs.com)](https://www.cnblogs.com/ixtwuko/p/probability-statistics-p07.html)
这3条公式背下来不太现实,得注重理解

统计学里对无偏性和无偏估计的深入理解:432统计学-无偏性与无偏估计_哔哩哔哩_bilibili
这里为置信区间概念介绍:通俗统计学原理入门12 - 置信区间 Confidence Interval 区间估计 点估计 t临界值 标准误_哔哩哔哩_bilibili

第八章:假设检验

两类错误:
对于假设 H 0 H_{0} H0

  • 第一类错误:拒绝实际真的假设。
  • 第二类错误:接受实际不真的假设。(考填空题)

参考来源:

笔记整理:概率论与数理统计 - ixtwuko - 博客园 (cnblogs.com)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值