概率论基础 —— 8.数学期望、方差、协方差

我们在学习了离散型和连续型随机概率事件,以及它们的分布函数和密度概率函数之后。接下来我们要学习对概率事件进行评判的技术——期望、方差、协方差。
这些概念有什么用呢,举例来说,对于一次期末考试,如何评估同一个年级的不同班级的学生的学习状况差异,如何找出年级最优班级和最差班级呢,以及在两个班级整体状况都相差不大时,如何比较一个班级学生成绩情况比另一个班级更好呢?
如果还记得我们前面提到过的概率分布函数,那么就可以知道这一类样本的比较,其实属于对样本的分布规律的分析。

期望 (Expectation)

只要样本遵循一定的分布,比如说打靶落入靶上的落点就一定分布在靶心周围。又比如加工一批零件,比如笔记本上常见的m2螺丝,加工出来的螺丝精度一定在标准设计尺寸上轻微浮动。

对于数学期望来说,如果统计的事件样本它本身遵循一定分布规律,那么它必然有朝着某个值收敛的特征,着这就是期望。

计算数学期望的方法其实很简单,就是算概率均值,所以在一些数学统计库(程序)里,相关的函数名字可能叫mean(均值),或者expect(期望)。

它的计算方法,对于离散和连续基本是相似的,其数学表示符号是 E ( X ) E(X) E(X)

离散型

E ( X ) = ∑ x i p i E(X) = \sum x_i p_i E(X)=xipi

x i x_i xi k i k_i ki分别表示样本值,和样本出现概率。

连续型

E ( X ) = ∫ x f ( x ) d x E(X) = \int x f(x) dx E(X)=xf(x)dx

f ( x ) f(x) f(x)学了之前的章节应该认识,它就是概率密度。

方差 (Variance / Square Difference)

我们用期望,计算样本通常收敛在什么值的范围,自然还需要关心样本之间的误差范围。以最开始用来举例的班级期末考试为例,学校需要知道某个年级的A,B,C,D四个班级成绩情况,如果计算期望后,发现它们都收敛在80分左右,那么就需要另外一个指标帮助判断各班级的学习情况

在这里插入图片描述

在期望都是80分的情况下,学生们的成绩越接近,说明班级同学的差异越少。反之,则说明班级里有学习特别好的人和特别差的人,对于成绩好的学生他们有可能有参加额外的课外补习,而成绩差的有可能放学后放羊的更多。

对于前一种情况,我们从学校的角度来看,说明该班级的负责老师,教育水平不错,管理能力也不错,学生们受到了足够且充分的教育。而后一种情况,既有可能是老师的水平不行,也有可能是班级同学间的家庭差异过大导致的异常。

那么从数学上,一眼看出两组样本在统计上的差异,通常就会用到所谓方差的概念。

Variance 的英文语义是值的样本差异,而方差则是国内根据样本计算方法给予的命名,即平方差,样本与期望之间差的平方,计算方式也大体上差不多。

离散型

D ( X ) = ∑ ( x i − μ ) 2 D(X) = \sum (x_i - \mu)^2 D(X)=(xiμ)2

连续型

D ( X ) = ∫ ( x − μ ) 2 f ( x ) d x D(X) = \int (x - \mu)^2 f(x) dx D(X)=(xμ)2f(x)dx

μ \mu μ 在这里都表示期望。此外,我们有一个快速计算方差的公式:

D ( X ) = E ( X 2 ) − E 2 ( X ) D(X) = E(X^2) - E^2(X) D(X)=E(X2)E2(X)

即:平方的期望减去期望的平方。

快速计算方差的公式 D ( X ) = E ( X 2 ) − E 2 ( X ) D(X) = E(X^2) - E^2(X) D(X)=E(X2)E2(X) 的推导过程其实是从方差的定义出发,通过简单的代数变换得到的。以下是详细的推导过程:

  1. 方差的定义。方差 D ( X ) D(X) D(X) 定义为随机变量 X X X 与其期望 E ( X ) E(X) E(X) 之间差异的平方的期望,即:
    D ( X ) = E [ ( X − E ( X ) ) 2 ] D(X) = E[(X - E(X))^2] D(X)=E[(XE(X))2]
  2. 展开平方。我们首先对括号中的表达式进行展开:
    D ( X ) = E [ X 2 − 2 X ⋅ E ( X ) + E ( X ) 2 ] D(X) = E[X^2 - 2X \cdot E(X) + E(X)^2] D(X)=E[X22XE(X)+E(X)2]
    这里用了平方的展开公式 ( a − b ) 2 = a 2 − 2 a b + b 2 (a - b)^2 = a^2 - 2ab + b^2 (ab)2=a22ab+b2,其中 a = X a = X a=X b = E ( X ) b = E(X) b=E(X)
  3. 期望的线性性质。期望运算符 E [ ⋅ ] E[\cdot] E[] 是线性的,因此我们可以将期望作用在每一项上:
    D ( X ) = E [ X 2 ] − 2 E [ X ⋅ E ( X ) ] + E [ E ( X ) 2 ] D(X) = E[X^2] - 2E[X \cdot E(X)] + E[E(X)^2] D(X)=E[X2]2E[XE(X)]+E[E(X)2]
  4. 简化表达式。接下来,我们对公式进行简化:
    对于第二项 E [ X ⋅ E ( X ) ] E[X \cdot E(X)] E[XE(X)],因为 E ( X ) E(X) E(X) 是一个常数,可以将其提到期望运算符外:
    E [ X ⋅ E ( X ) ] = E ( X ) ⋅ E ( X ) = E ( X ) 2 E[X \cdot E(X)] = E(X) \cdot E(X) = E(X)^2 E[XE(X)]=E(X)E(X)=E(X)2
    对于第三项 E [ E ( X ) 2 ] E[E(X)^2] E[E(X)2],因为 E ( X ) E(X) E(X) 是常数,因此其平方也是常数,可以直接简化为:
    E [ E ( X ) 2 ] = E ( X ) 2 E[E(X)^2] = E(X)^2 E[E(X)2]=E(X)2
    将这些代入方差的表达式中,我们得到:
    D ( X ) = E [ X 2 ] − 2 E ( X ) 2 + E ( X ) 2 D(X) = E[X^2] - 2E(X)^2 + E(X)^2 D(X)=E[X2]2E(X)2+E(X)2
  5. 合并项。我们合并同类项:
    D ( X ) = E [ X 2 ] − E ( X ) 2 D(X) = E[X^2] - E(X)^2 D(X)=E[X2]E(X)2
    因此,我们得到了快速计算方差的公式。

均方差(Mean Variance / Mean Square)

此外,从方差还引申出均方差的概念,也就是对方差算平均值,在随机下降算法中被应用在评判模型与观测值的误差程度。

D ( X ˉ ) = D ( X ) n D(\bar{X}) = \frac{D(X)}{n} D(Xˉ)=nD(X)

标准差(Standard Deviation)

方差的开根号形式,记得好像中学教材中用的挺多,但是对于科研和实际工作中因为其形式就是方差的开根号形式,所以反而不常用。数学符号通常用 σ \sigma σ表示,方差的数学符号通常用 σ 2 \sigma^2 σ2,均方差在传统的数学论文中不怎么常见,所以印象中好像没有专门的符号表示,而在AI领域的论文中通常以简写MSE(Mean Square Equation)或者(Mean Square Error)即均方差误差,形式表示。

另外补充一点,在算法、数据挖掘、AI等领域中,PDF不是指那个看文件的软件,通常指概率密度函数( Probability Density Function)。你看,没用的知识点是不是又增加了一点?

σ = D ( X ) = σ 2 \sigma = \sqrt{D(X)} = \sqrt{\sigma^2} σ=D(X) =σ2

关于期望、方差数学符号表示需要注意的一点

另外多说一点,就是在一些论文或者之前提到过的《五种重要的概率分布模型》 中,期望有时候又被写成 λ \lambda λ, 而方差一般习惯性用 σ 2 \sigma ^2 σ2 进行表示,因此对于标准差,就是 σ \sigma σ 了。

苏联体系、英美体系在很多科学技术上符号的应用上很多没有得到有效的统一(这不仅仅在数学,物理学,电学等诸学科里都有所体现),或者形成个统一的世界规范。这对于做科研,比如在阅读文献的时候会造成一定的混淆。

所以,这要求我们在学习这些知识时,一定要理解公式背后的数学含义。而不能简简单单的死记公式。

协方差(Covariance / Correlation Coefficient)

方差是协方差的一种,不过协方差更多的是表示两个变量的变化趋势是否一致。也就是说如果其中一个大于自身的期望值,另外一个也大于自身的期望值,那么两个变量之间的协方差就是正值。 如果两个变量的变化趋势相反,即其中一个大于自身的期望值,另外一个却小于自身的期望值,那么两个变量之间的协方差就是负值。

在这里插入图片描述

协方差的计算公式为:

C o v ( X , Y ) = E [ ( X − μ x ) ( Y − μ y ) ] Cov(X, Y) = E [ (X - \mu_x)(Y - \mu_y) ] Cov(X,Y)=E[(Xμx)(Yμy)]

或者

C o v ( X , Y ) = E [ ( X − E ( X ) ) ( Y − E ( Y ) ) ] Cov(X, Y) = E[(X - E(X))(Y- E(Y))] Cov(X,Y)=E[(XE(X))(YE(Y))] 也就是X和Y分别与它的期望的差的积。

而从协方差中会得到引申,就是关联系数,即:

ρ = C o v ( X , Y ) σ x σ y \rho = \frac{Cov(X, Y)}{\sigma_x \sigma_y} ρ=σxσyCov(X,Y)

这里的 σ \sigma σ 是标准差的意思,还有另外的一个表达形式:

ρ = C o v ( X , Y ) D ( X ) D ( Y ) \rho = \frac{Cov(X, Y)}{\sqrt{D(X)} \sqrt{D(Y)}} ρ=D(X) D(Y) Cov(X,Y)

这里都是一个意思,只是表达形式上的差异。它有几个等式,其实非常容易推导并证明,你只要把这几个符号代表的函数式代入就能得到了。

  1. C o v ( X , Y ) = C o v ( Y , X ) Cov(X, Y) = Cov(Y, X) Cov(X,Y)=Cov(Y,X)
  2. C o v ( X , X ) = D ( X ) Cov(X, X) = D(X) Cov(X,X)=D(X)
  3. D ( X + Y ) = D ( X ) + D ( Y ) + 2 C o v ( X , Y ) D(X+Y) = D(X) + D(Y) + 2Cov(X, Y) D(X+Y)=D(X)+D(Y)+2Cov(X,Y)
  4. C o v ( X , Y ) = E ( X Y ) − E ( X ) E ( Y ) Cov(X, Y) = E(XY) - E(X)E(Y) Cov(X,Y)=E(XY)E(X)E(Y)

最后,来做一点题吧

例题

例1

设一电路中电流 I ( A ) I(A) I(A) 与电阻 R ( Ω ) R(\Omega) R(Ω) 是两个相互独立的随机变量,其概率密度分别为:
g ( i ) = { 2 i 0 ≤ i ≤ 1 0 e l s e g(i) = \left \{ \begin{matrix} 2i & 0 \leq i \leq 1 \\ 0 & else \end{matrix} \right. g(i)={2i00i1else
h ( r ) = { r 2 9 0 ≤ r ≤ 3 0 e l s e h(r) = \left \{ \begin{matrix} \frac{r^2}{9} & 0 \leq r \leq 3 \\ 0 & else \end{matrix} \right. h(r)={9r200r3else
试求电压V=IR的均值。

扯一点题外话,这类问题在电路中比较常见,比如说直流纹波。比如电路是通过交流电转直流后,经过交变直电路后,多少会存在纹波现象。此外,电路中因为电磁干扰,信号电路也会产生纹波现象。还有,电阻通电后,由于温度、电压变化,也会出现其伏安特性的变化。

这题比较简单,总的来说就是求期望值/均值。只要我们记得对于连续型随机变量,其均值/期望值是如何求解的公式,就能比较容易做出这道题了。

E ( V ) = E ( I R ) = ∫ i g ( i ) d i ⋅ ∫ r h ( r ) d r E(V) = E(IR) = \int i g(i)di \cdot \int r h(r)dr E(V)=E(IR)=ig(i)dirh(r)dr

带入题干给出的密度公式,和积分范围:

E ( V ) = 2 3 i 3 ∣ 0 1 ⋅ 1 36 r 4 ∣ 0 3 = ( 2 3 ) ( 9 4 ) = 3 2 V E(V) = \frac{2}{3} i^3 \bigg|_0^1 \cdot \frac{1}{36} r^4 \bigg |_0^3 = (\frac{2}{3})(\frac{9}{4}) = \frac{3}{2} V E(V)=32i3 01361r4 03=(32)(49)=23V

例2

随机变量 X X X 的分布律如下:

X012
P0.40.30.2


(1) E ( X ) E(X) E(X);
(2) Y = X 2 Y = X^2 Y=X2, 求 E(Y);
(3) D(X)

解(1), 第一题很简单,直接带入离散型的期望公式

E ( X ) = ∑ x i p i = 0 ∗ 0.4 + 1 ∗ 0.3 + 2 ∗ 0.2 = 0.7 E(X) = \sum x_i p_i = 0 * 0.4 + 1 * 0.3 + 2 * 0.2 = 0.7 E(X)=xipi=00.4+10.3+20.2=0.7

解(2),这题跟我们之前做离散型的分布律是一样的,先写出Y的分布律

X012
Y014
P0.40.30.3

所以

E ( Y ) = 0 ∗ 0.4 + 1 ∗ 0.3 + 4 ∗ 0.3 = 1.5 E(Y) = 0 * 0.4 + 1 * 0.3 + 4 * 0.3 = 1.5 E(Y)=00.4+10.3+40.3=1.5

解(3),我们直接引用公式 D ( X ) = E ( X 2 ) − E 2 ( X ) D(X) = E(X^2) - E^2(X) D(X)=E(X2)E2(X),所以有:

D ( X ) = 1.5 − 0. 7 2 = 1.01 D(X) = 1.5 - 0.7^2 = 1.01 D(X)=1.50.72=1.01

常用分布的数学期望和方差

再就是这个别人总结的常用数学期望和方差表

在这里插入图片描述

还有就是期望和方差的一些计算公式,如果记不住也没关系,可以直接用公式快速的推导。
在这里插入图片描述

另外,关于协方差涉及到一些其他知识点,我们在下一章里再见!

评论 17
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值