机器学习技法-Gradient Boosted Decision Tree

大纲

这里写图片描述

上节课我们主要介绍了Random Forest算法模型。Random Forest就是通过bagging的方式将许多不同的decision tree组合起来。除此之外,在decision tree中加入了各种随机性和多样性,比如不同特征的线性组合等。RF还可以使用OOB样本进行self-validation,而且可以通过permutation test进行feature selection。本节课将使用Adaptive Boosting的方法来研究decision tree的一些算法和模型。

Adaptive Boosted Decision Tree

1 From Random Forest to AdaBoost-DTree

Random Forest的算法流程我们上节课也详细介绍过,就是先通过bootstrapping“复制”原样本集D,得到新的样本集 D ;然后对每个 D 进行训练得到不同的decision tree和对应的 gt ;最后再将所有的 gt 通过uniform的形式组合起来,即以投票的方式得到G。这里采用的Bagging的方式,也就是把每个 gt 的预测值直接相加。现在,如果将Bagging替换成AdaBoost,处理方式有些不同。首先得到的 D 中每个样本会赋予不同的权重 u(t) ;然后在每个decision tree中,利用这些权重训练得到最好的 gt ;最后得出每个 gt 所占的权重,线性组合得到G。这种模型称为AdaBoost-D Tree。

这里写图片描述

但是在决策树模型中,例如C&RT算法中并没有引入 u(t) 。那么,如何在决策树中引入这些权重 u(t) 来得到不同的 gt 而又不改变原来的决策树算法呢?

2 Weighted Decision Tree Algorithm

在Adaptive Boosting中,我们使用了weighted algorithm,形如:

Euin(h)=1Nn=1Nunerr(yn,h(xn))

这里写图片描述

每个犯错误的样本点乘以相应的权重,求和再平均,最终得到了 Euin(h) 。如果在决策树中使用这种方法,将当前分支下犯错误的点赋予权重,每层分支都这样做,会比较复杂,不易求解。为了简化运算,保持决策树算法本身的稳定性和封闭性,我们可以把决策树算法当成一个黑盒子,即不改变其结构,不对算法本身进行修改,而从数据来源 D 上做一些处理。按照这种思想,我们来看权重u实际上表示该样本在bootstrap中出现的次数,反映了它出现的概率。那么可以根据u值,对原样本集D进行一次重新的随机sampling,也就是带权重的随机抽样。sampling之后,会得到一个新的 D D 中每个样本出现的几率与它权重u所占的比例应该是差不多接近的。因此,使用带权重的sampling操作,得到了新的样本数据集 D ,可以直接代入决策树进行训练,从而无需改变决策树算法结构。sampling可看成是bootstrap的反操作,这种对数据本身进行修改而不更改算法结构的方法非常重要!

这里写图片描述

所以总结来说:AdaBoost-DTree结合了AdaBoost和DTree,但是做了一点小小的改变,就是使用sampling替代权重 u(t) ,效果是相同的。

这里写图片描述

3 Weak Decision Tree Algorithm

上面我们通过使用sampling,将不同的样本集代入决策树中,得到不同的 gt 。除此之外,我们还要确定每个 gt 所占的权重 αt 。之前我们在AdaBoost中已经介绍过,首先算出每个 gt 的错误率 ϵt ,然后计算权重:

这里写图片描述

我们来看一下决策树算法的缺点

如果现在有一棵完全长成的树(fully grown tree),由所有的样本 xn 训练得到。若每个样本都不相同的话,一刀刀切割分支,直到所有的 xn 都被完全分开。这时候, Ein(gt)=0 ,加权的 Euin(gt)=0 而且 ϵt 也为0,从而得到权重 αt= αt= 表示该 gt 所占的权重无限大,相当于它一个就决定了G结构,是一种autocracy,而其它的 gt 对G没有影响。

这里写图片描述

显然 αt= 不是我们想看到的,因为autocracy总是不好的,我们希望使用aggregation将不同的 gt 结合起来,发挥集体智慧来得到最好的模型G。首先,我们来看一下什么原因造成了 αt= 。有两个原因:一个是使用了所有的样本 xn 进行训练;一个是树的分支过多,fully grown。针对这两个原因,我们可以对树做一些修剪(pruned),比如只使用一部分样本,这在sampling的操作中已经起到这类作用,因为必然有些样本没有被采样到。除此之外,我们还可以限制树的高度,让分支不要那么多,从而避免树fully grown。

这里写图片描述

4 AdaBoost with Extremely-Pruned Tree

刚才我们说了可以限制树的高度,那索性将树的高度限制到最低,即只有1层高的时候,有什么特性呢?当树高为1的时候,整棵树只有两个分支,切割一次即可。如果impurity是binary classification error的话,那么此时的AdaBoost-DTree就跟AdaBoost-Stump没什么两样。也就是说AdaBoost-Stump是AdaBoost-DTree的一种特殊情况。

这里写图片描述

值得一提是,如果树高为1时,通常较难遇到 ϵt=0 的情况,且一般不采用sampling的操作,而是直接将权重u代入到算法中。这是因为此时的AdaBoost-DTree就相当于是AdaBoost-Stump,而AdaBoost-Stump就是直接使用u来优化模型的。

Optimization View of AdaBoost

1 Example Weights of AdaBoost

接下来,我们继续将继续探讨AdaBoost算法的一些奥妙之处。我们知道AdaBoost中的权重的迭代计算如下所示:

这里写图片描述

之前对于incorrect样本和correct样本, u(t+1)n 的表达式不同。现在,把两种情况结合起来,将 u(t+1)n 写成一种简化的形式:

u(t+1)n=u(t)nyngt(xn)t=u(t)nexp(ynαtgt(xn))

这里写图片描述

其中,对于incorrect样本, yngt(xn)<0 ,对于correct样本, yngt(xn)>0 。从上式可以看出, u(t+1)n u(t)n 与某个常数相乘得到。所以,最后一轮更新的 u(T+1)n 可以写成 u(1)n 的级联形式,我们之前令 u(1)n=1N ,则有如下推导:

u(T+1)n=u(1)nt=1Texp(ynαtgt(xn))=1Nexp(ynt=1Tαtgt(xn))

上式中 Tt=1αtgt(xn) 被称为voting score,最终的模型 G=sign(Tt=1αtgt(xn)) 。可以看出,在AdaBoost中, u(T+1)n exp(yn(voting score on xn)) 成正比。

2 Voting Score and Margin

这里写图片描述

接下来我们继续看一下voting score中蕴含了哪些内容。如上图所示,voting score由许多 gt(xn) 乘以各自的系数 αt 线性组合而成。从另外一个角度来看,我们可以把 gt(xn) 看成是对 xn 的特征转换 ϕ(xn) αt 就是线性模型中的权重 wi 。看到这里,我们回忆起之前SVM中,w与 ϕ(xn) 的乘积再除以w的长度就是margin,即点到边界的距离。另外,乘积项再与 yn 相乘,表示点的位置是在正确的那一侧还是错误的那一侧。所以,回过头来,这里的voting score实际上可以看成是没有正规化(没有除以w的长度)的距离,即可以看成是该点到分类边界距离的一种衡量。从效果上说,距离越大越好,也就是说voting score要尽可能大一些。

这里写图片描述

我们再来看,若voting score与 yn 相乘,则表示一个有对错之分的距离。也就是说,如果二者相乘是负数,则表示该点在错误的一边,分类错误;如果二者相乘是正数,则表示该点在正确的一边,分类正确。所以,我们算法的目的就是让 yn 与voting score的乘积是正的,而且越大越好。那么在刚刚推导的 u(T+1)n 中,得到 exp(yn(votingscore)) 越小越好,从而得到 u(T+1)n 越小越好。也就是说,如果voting score表现不错,与yn的乘积越大的话,那么相应的 u(T+1)n 应该是最小的。

3 AdaBoost Error Function

那么在AdaBoost中,随着每轮学习的进行,每个样本的 u(t)n 是逐渐减小的,直到 u(t)n 最小。以上是从单个样本点来看的。总体来看,所有样本的 u(t)n 之和应该也是最小的。我们的目标就是在最后一轮(T+1)学习后,让所有样本的 u(t)n 之和尽可能地小。 u(t)n 之和表示为如下形式:
这里写图片描述

上式中, Tt=1αtgt(xn) 被称为linear score,用s表示。对于0/1 error:若ys<0,则 err0/1=1 ;若ys>=0,则 err0/1=0 。如下图右边黑色折线所示。对于上式中提到的指数error,即 errADA(s,y)=exp(ys) ,随着ys的增加,error单调下降,且始终落在0/1 error折线的上面。如下图右边蓝色曲线所示。很明显, errADA(s,y) 可以看成是0/1 error的上界。所以,我们可以使用 errADA(s,y) 来替代0/1 error,能达到同样的效果。从这点来说, Nn=1u(T+1)n 可以看成是一种error measure,而我们的目标就是让其最小化,求出最小值时对应的各个 αt gt(xn)

这里写图片描述

3 Gradient Descent on AdaBoost Error Function

下面我们来研究如何让 Nn=1u(T+1)n 取得最小值,思考是否能用梯度下降(gradient descent)的方法来进行求解。我们之前介绍过gradient descent的核心是在某点处做一阶泰勒展开:

这里写图片描述

其中, wt 是泰勒展开的位置,v是所要求的下降的最好方向,它是梯度 Ein(wt) 的反方向,而 η 是每次前进的步长。则每次沿着当前梯度的反方向走一小步,就会不断逼近谷底(最小值)。这就是梯度下降算法所做的事情。

现在,我们对 EADA 做梯度下降算法处理,区别是这里的方向是一个函数 gt ,而不是一个向量 wt 。其实,函数和向量的唯一区别就是一个下标是连续的,另一个下标是离散的,二者在梯度下降算法应用上并没有大的区别。因此,按照梯度下降算法的展开式,做出如下推导:

这里写图片描述

上式中, h(xn) 表示当前的方向,它是一个矩, η 是沿着当前方向前进的步长。我们要求出这样的 h(xn) η ,使得 EADA 是在不断减小的。当 EADA 取得最小值的时候,那么所有的方向即最佳的 h(xn) η 就都解出来了。上述推导使用了在 ynηh(xn)=0 处的一阶泰勒展开近似。这样经过推导之后, EADA 被分解为两个部分,一个是前N个u之和 Nn=1u(t)n ,也就是当前所有的 Ein 之和;另外一个是包含下一步前进的方向 h(xn) 和步进长度 η 的项 ηNn=1u(t)nynh(xn) EADA 的这种形式与gradient descent的形式基本是一致的。

4 Learning Hypothesis as Optimization

那么接下来,如果要最小化 EADA 的话,就要让第二项 ηNn=1u(t)nynh(xn) 越小越好。则我们的目标就是找到一个好的 h(xn) (即好的方向)来最小化 ηNn=1u(t)nynh(xn) ,此时先忽略步进长度 η

这里写图片描述

对于binary classification, yn h(xn) 均限定取值-1或+1两种。我们对 Nn=1u(t)nynh(xn) 做一些推导和平移运算:
这里写图片描述

最终 Nn=1u(t)nynh(xn) 化简为两项组成,一项是 Nn=1u(t)n ;另一项是 2Eu(t)in(h)N 。则最小化 Nn=1u(t)nynh(xn) 就转化为最小化 2Eu(t)in(h)N 。要让 2Eu(t)in(h)N 最小化,正是由AdaBoost中的base algorithm所做的事情。所以说,AdaBoost中的base algorithm正好帮我们找到了梯度下降中下一步最好的函数方向。

这里写图片描述

5 Deciding Blending Weight as Optimization

以上就是从数学上,从gradient descent角度验证了AdaBoost中使用base algorithm得到的gt就是让 EADA 减小的方向,只不过这个方向是一个函数而不是向量。

在解决了方向问题后,我们需要考虑步进长度 η 如何选取。方法是在确定方向 gt 后,选取合适的 η ,使 EADA 取得最小值。也就是说,把 EADA 看成是步长η的函数,目标是找到 EADA 最小化时对应的 η 值。

这里写图片描述

目的是找到在最佳方向上的最大步进长度,也就是steepest decent。我们先把 EADA 表达式写下来:

EADA=n=1Nu(t)nexp(ynηgt(xn))

上式中,有两种情况需要考虑:

yn=gt(xn)u(t)nexp(η) correct

yngt(xn)u(t)nexp(+η) incorrect

经过推导,可得:

EADA=(n=1Nu(t)n)((1ϵt)exp(η)+ϵtexp(+η))

这里写图片描述

然后对 η 求导,令 EADAη=0 ,得:

ηt=lb1ϵtϵt

这里写图片描述

由此看出,最大的步进长度就是 αt ,即AdaBoost中计算 gt 所占的权重。所以,AdaBoost算法所做的其实是在gradient descent上找到下降最快的方向和最大的步进长度。这里的方向就是 gt ,它是一个函数,而步进长度就是 αt 。也就是说,在AdaBoost中确定 gt alphat 的过程就相当于在gradient descent上寻找最快的下降方向和最大的步进长度。

Gradient Boosting

1 Gradient Boosting for Arbitrary Error Function

前面我们从gradient descent的角度来重新介绍了AdaBoost的最优化求解方法。整个过程可以概括为:

这里写图片描述

以上是针对binary classification问题。如果往更一般的情况进行推广,对于不同的error function,比如logistic error function或者regression中的squared error function,那么这种做法是否仍然有效呢?这种情况下的GradientBoost可以写成如下形式:

这里写图片描述

仍然按照gradient descent的思想,上式中, h(xn) 是下一步前进的方向, η 是步长。此时的error function不是前面所讲的exp了,而是任意的一种error function。因此,对应的hypothesis也不再是binary classification,最常用的是实数输出的hypothesis,例如regression。最终的目标也是求解最佳的前进方向 h(xn) 和最快的步长 η

2 GradientBoost for Regression

接下来,我们就来看看如何求解regression的GradientBoost问题。它的表达式如下所示:

这里写图片描述

利用梯度下降的思想,我们把上式进行一阶泰勒展开,写成梯度的形式:

这里写图片描述

上式中,由于regression的error function是squared的,所以,对s的导数就是 2(snyn) 。其中标注灰色的部分表示常数,对最小化求解并没有影响,所以可以忽略。很明显,要使上式最小化,只要令 h(xn) 是梯度 2(snyn) 的反方向就行了,即 h(xn)=2(snyn) 。但是直接这样赋值,并没有对 h(xn) 的大小进行限制,一般不直接利用这个关系求出 h(xn)

3 Learning Hypothesis as Optimization

实际上 h(xn) 的大小并不重要,因为有步进长度 η 。那么,我们上面的最小化问题中需要对 h(xn) 的大小做些限制。限制 h(xn) 的一种简单做法是把 h(xn) 的大小当成一个惩罚项 h2(xn) 添加到上面的最小化问题中,这种做法与regularization类似。如下图所示,经过推导和整理,忽略常数项,我们得到最关心的式子是:

这里写图片描述

minn=1N((h(xn)(ynsn))2)

上式是一个完全平方项之和,yn−sn表示当前第n个样本真实值和预测值的差,称之为余数。余数表示当前预测能够做到的效果与真实值的差值是多少。那么,如果我们想要让上式最小化,求出对应的 h(xn) 的话,只要让 h(xn) 尽可能地接近余数 ynsn 即可。在平方误差上尽可能接近其实很简单,就是使用regression的方法,对所有N个点 (xn,ynsn) 做squared-error的regression,得到的回归方程就是我们要求的 gt(xn)

以上就是使用GradientBoost的思想来解决regression问题的方法,其中应用了一个非常重要的概念,就是余数 ynsn 。根据这些余数做regression,得到好的矩 gt(xn) ,方向函数 gt(xn) 也就是由余数决定的。

4 Deciding Blending Weight as Optimization

在求出最好的方向函数 gt(xn) 之后,就要来求相应的步进长度 η 。表达式如下:
这里写图片描述

同样,对上式进行推导和化简,得到如下表达式:

这里写图片描述

上式中也包含了余数 ynsn ,其中 gt(xn) 可以看成是 xn 的特征转换,是已知量。那么,如果我们想要让上式最小化,求出对应的 η 的话,只要让 \etagt(xn) 尽可能地接近余数 ynsn 即可。显然,这也是一个regression问题,而且是一个很简单的形如y=ax的线性回归,只有一个未知数 η 。只要对所有N个点 (ηgt(xn),ynsn) 做squared-error的linear regression,利用梯度下降算法就能得到最佳的 η

5 Putting Everything Together

将上述这些概念合并到一起,我们就得到了一个最终的演算法Gradient Boosted Decision Tree(GBDT)。可能有人会问,我们刚才一直没有说到Decison Tree,只是讲到了GradientBoost啊?下面我们来看看Decison Tree究竟是在哪出现并使用的。其实刚刚我们在计算方向函数 gt 的时候,是对所有N个点 (xn,ynsn) 做squared-error的regression。那么这个回归算法就可以是决策树C&RT模型(决策树也可以用来做regression)。这样,就引入了Decision Tree,并将GradientBoost和Decision Tree结合起来,构成了真正的GBDT算法。GBDT算法的基本流程图如下所示:

这里写图片描述

值得注意的是, sn 的初始值一般均设为0,即 s1=s2==sN=0 。每轮迭代中,方向函数 gt 通过C&RT算法做regression,进行求解;步进长度 η 通过简单的单参数线性回归进行求解;然后每轮更新 sn 的值,即 snsn+αtgt(xn) 。T轮迭代结束后,最终得到 G(x)=Tt=1αtgt(x)

值得一提的是,本节课第一部分介绍的AdaBoost-DTree是解决binary classification问题,而此处介绍的GBDT是解决regression问题。二者具有一定的相似性,可以说GBDT就是AdaBoost-DTree的regression版本。

Summary of Aggregation Models

1 Summary ofAggregation Models

首先,我们介绍了blending。blending就是将所有已知的gt aggregate结合起来,发挥集体的智慧得到G。值得注意的一点是这里的 gt 都是已知的。blending通常有三种形式:

这里写图片描述

  • uniform:简单地计算所有 gt 的投票或平均值

  • non-uniform:所有 gt 的线性组合

  • conditional:所有 gt 的非线性组合

其中,uniform采用投票、求平均的形式更注重稳定性;而non-uniform和conditional追求的更复杂准确的模型,但存在过拟合的危险。

2 Map of Aggregation-Learning Models

刚才讲的blending是建立在所有 gt 已知的情况。那如果所有 gt 未知的情况,对应的就是learning模型,做法就是一边学 gt ,一边将它们结合起来。learning通常也有三种形式(与blending的三种形式一一对应):

这里写图片描述

  • Bagging:通过bootstrap方法,得到不同 gt ,计算所有 gt 的平均值

  • AdaBoost :通过re_weight方法,得到不同 gt ,所有 gt 的线性组合

  • GradientBoost:通过residual fitting的方式得到最佳的方向函数 gt 和步进长度 η

  • Decision Tree:通过数据分割的形式得到不同的 gt ,所有 gt 的非线性组合

3 Map of Aggregation of Aggregation Models

除了这些基本的aggregation模型之外,我们还可以把某些模型结合起来得到新的aggregation模型。例如,Bagging与Decision Tree结合起来组成了Random Forest。Random Forest中的Decision Tree是比较“茂盛”的树,即每个树的 gt 都比较强一些。AdaBoost与Decision Tree结合组成了AdaBoost-DTree。AdaBoost-DTree的Decision Tree是比较“矮弱”的树,即每个树的 gt 都比较弱一些,由AdaBoost将所有弱弱的树结合起来,让综合能力更强。同样,GradientBoost与Decision Tree结合就构成了经典的算法GBDT。

这里写图片描述

4 Specialty of Aggregation Models

Aggregation的核心是将所有的gt结合起来,融合到一起,即集体智慧的思想。这种做法之所以能得到很好的模型G,是因为aggregation具有两个方面的优点:cure underfitting和cure overfitting。

这里写图片描述

第一,aggregation models有助于防止欠拟合(underfitting)。它把所有比较弱的 gt 结合起来,利用集体智慧来获得比较好的模型G。aggregation就相当于是feature transform,来获得复杂的学习模型。

第二,aggregation models有助于防止过拟合(overfitting)。它把所有 gt 进行组合,容易得到一个比较中庸的模型,类似于SVM的large margin一样的效果,从而避免一些极端情况包括过拟合的发生。从这个角度来说,aggregation起到了regularization的效果。

由于aggregation具有这两个方面的优点,所以在实际应用中aggregation models都有很好的表现。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值