机器学习
文章平均质量分 80
carry_1024
这个作者很懒,什么都没留下…
展开
-
【机器学习个人笔记】part1——用sklearn实现数据预处理
【机器学习个人笔记】part1——数据预处理1.导入数据处理标准库2.导入数据集3.处理缺省数据4.处理分类数据,虚拟编码5.划分训练集和测试集6.特征缩放 1.导入数据处理标准库 import numpy as np import pandas as pd import matplotlib.pyplot as plt 2.导入数据集 dataset = pd.read_csv('../Dat...原创 2018-12-02 21:09:39 · 782 阅读 · 1 评论 -
【sklearn的一般流程】sklearn的一般流程,以鸢尾花分类为例
【机器学习个人笔记】sklearn的一般流程,以鸢尾花分类为例1. 数据的获取2. 数据预处理特征缩放切割训练集和测试集3.训练模型4.模型的评估查看参数 get_params()查看模型评分 score(X_test, y_test)查看分类模型的评分报告 classification_report()用交叉验证评分 cross_val_score5.模型的优化 1. 数据的获取 sklearn...原创 2018-12-17 17:54:49 · 2212 阅读 · 1 评论 -
【机器学习个人笔记】scikit-learn的四种特征缩放方式
【机器学习个人笔记】scikit-learn的三种特征缩放方式 在运用一些机器学习算法的时候不可避免地要对数据进行特征缩放(feature scaling),比如:在随机梯度下降(stochastic gradient descent)算法中,特征缩放有时能提高算法的收敛速度。 特征缩放还可以使机器学习算法工作的更好。比如在K近邻算法中,分类器主要是计算两点之间的欧几里得距离,如果一个特征比其它的...原创 2018-12-17 16:42:36 · 2036 阅读 · 1 评论 -
【机器学习个人笔记】part7——用sklearn实现聚类——K-Means算法
用sklearn实现聚类——K-Means算法1.k-means聚类的步骤2.随机初始化陷阱3.如何选择聚类数?手肘法则4.用kmeans算法实现聚类 1.k-means聚类的步骤 选择想要分类的个数K 在平面中随机选择K个点(并不需要找数据中的点) 分配:依据数据集中的每个点到K个点的距离,找到每个点对应的最短距离的点(比如m1离k3最近),这样数据集将分成K类 更新:寻找每个类的中心点,将其...原创 2018-12-20 17:54:51 · 1589 阅读 · 0 评论 -
【机器学习个人笔记】part6——用sklearn实现SVM(支持向量机)
SVM——support vector machine 是目前使用最广泛的分类模型,该模型又被称为大间距分类器 样例: 场景:根据用户的年龄、薪水来预测其是否购买SUV 数据集: 简单分析一下这个数据集,第一列是用户id,第二列是用户性别,本次实验不考虑这两个特征。我们希望通过根据用户的年龄和薪水预测用户是否会购买SUV,根据预测结果对用户进行针对性推销。那么age和salary将是我们自变量...原创 2018-12-09 18:39:06 · 874 阅读 · 0 评论 -
【机器学习个人笔记】用sklearn实现特征正则化Regularization
【机器学习个人笔记】用sklearn实现特征正则化 我们在学习机器学习的时候会经常听到正则化(Regularization),其一般是用于改善或者减少过度拟合问题。 下图是一个回归问题的例子: 第一个模型是一个线性模型,欠拟合,不能很好地适应我们的训练集;第三个模型是一 个四次方的模型,过于强调拟合原始数据,而丢失了算法的本质:预测新数据。我们可以看 出,若给出一个新的值使之预测,它将表现的很差...原创 2018-12-20 16:45:05 · 2514 阅读 · 1 评论 -
【机器学习个人笔记】part5——用sklearn实现逻辑回归
【机器学习个人笔记】part5——逻辑回归 逻辑回归虽然名字是“回归”,但实际是“分类“,如图所示就是最简单的逻辑回归: 实例: 场景:根据用户的年龄、薪水来预测其是否购买SUV 数据集: 简单分析一下这个数据集,第一列是用户id,第二列是用户性别,本次实验不考虑这两个特征。我们希望通过根据用户的年龄和薪水预测用户是否会购买SUV,根据预测结果对用户进行针对性推销。那么age和salary将是...原创 2018-12-09 11:46:26 · 614 阅读 · 1 评论 -
【机器学习个人笔记】part3——用sklearn实现多元线性回归
【机器学习个人笔记】part3——多元线性回归 简单线性回归可以看做是y = ax + b的函数,多元线性函数则可以看做是y = ax1 + bx2 + cx3 + d的函数。 简单线性回归就是通过一个特征去预测(比如用工作经验去预测薪水),而多元线性回归则是用多个特征去预测。 例子:根据“研究开发经费”、“广告投入”、“市场支出”、“所在区域” 来预测 “公司盈利额” 这里可以用虚拟编码来处理...原创 2018-12-03 22:54:33 · 3156 阅读 · 1 评论 -
【机器学习个人笔记】part2——用sklearn实现简单线性回归
【机器学习个人笔记】part2——简单线性回归 例子:用工作经验去预测薪水 数据集: 步骤: 导入标准库、导入数据集、分割训练集和测试集 # Importing the libraries import numpy as np import matplotlib.pyplot as plt import pandas as pd # Importing the dataset datase...原创 2018-12-03 19:58:23 · 294 阅读 · 0 评论 -
【机器学习个人笔记】part4——用sklearn实现多项式回归
【机器学习个人笔记】part4——多项式回归 先来对比简单线性回归、多元线性回归和多项式回归: “多元“指的是在方程中有多个变量,放在机器学习的角度上来说就是有多个特征 “多项式”指的是一个变量有不同的参数和幂 场景:根据职位(等级)来预测薪水 数据集预览: 代码: 数据预处理(导入标准库,导入数据集、分割、特征缩放) # Polynomial Regression # Import...原创 2018-12-05 09:10:58 · 984 阅读 · 0 评论 -
【sklearn的一般流程】数据的获取
【sklearn的一般流程】数据的获取1.生成回归数据 make_regression()2.生成分类数据 make_classification()3. 生成二维线性不可分的数据集 make_circles()4. 生成用于聚类的数据集 make_blobs() 1.生成回归数据 make_regression() from sklearn.datasets import mak...原创 2018-12-18 10:39:08 · 1190 阅读 · 1 评论