贝叶斯决策理论(一)

本文介绍了贝叶斯决策理论的基本概念,该理论在处理不确定性问题时提供了一种统计决策框架。通过引入先验概率和似然性,贝叶斯决策理论允许我们更新知识并做出最优决策。理论应用广泛,包括机器学习、信号处理和风险管理等领域。
摘要由CSDN通过智能技术生成
以后都发原创。初入模式方向,完全小白一个。做点笔记,欢迎斧正。

以癌细胞的识别为例,说明贝叶斯决策的思想。 假设细胞分为正常细胞和癌细胞,现在需要设法区分。
观察到细胞的特征有d个,这特征构成了一个d维的特征向量X
决策的任务:根据给定的特征向量X将细胞分类为正常细胞和癌细胞,这两种分别记为


概率估计的2层含义
1.各个属性在统计意义上的比例,称之为先验概率。例如正常细胞与异常细胞在统计意义上的比例,记为

2.各个属性的概率密度函数,记为 
<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值