四平方和【第七届】【省赛】【A组】

题目描述

四平方和定理,又称为拉格朗日定理:
每个正整数都可以表示为至多4个正整数的平方和。
如果把0包括进去,就正好可以表示为4个数的平方和。

比如:
5 = 0 2 + 0 2 + 1 2 + 2 2 5 = 0^2 + 0^2 + 1^2 + 2^2 5=02+02+12+22
7 = 1 2 + 1 2 + 1 2 + 2 2 7 = 1^2 + 1^2 + 1^2 + 2^2 7=12+12+12+22

对于一个给定的正整数,可能存在多种平方和的表示法。
要求你对4个数排序:
0 < = a < = b < = c < = d 0 <= a <= b <= c <= d 0<=a<=b<=c<=d
并对所有的可能表示法按 a , b , c , d a,b,c,d a,b,c,d 为联合主键升序排列,最后输出第一个表示法

输入输出

程序输入为一个正整数 N ( N < 5000000 ) N (N<5000000) N(N<5000000)
要求输出4个非负整数,按从小到大排序,中间用空格分开

例如,输入:
5
则程序应该输出:
0 0 1 2

例如,输入:
12
则程序应该输出:
0 2 2 2

再例如,输入:
773535
则程序应该输出:
1 1 267 838

资源约定

峰值内存消耗 < 256M
CPU消耗 < 3000ms

思路

  数据最大是五百万,所以要控制时间复杂度在 O ( n l o g n ) 或者 O ( n ) O(nlogn)或者O(n) O(nlogn)或者O(n)。因为要求的数有四个,按照一般的想法,枚举前三个,然后计算判断第四个是否合法,因为每一次枚举都是 n \sqrt{n} n 的,所以这个时间复杂度是 O ( n n ) 的 O(n\sqrt{n})的 O(nn ),会超时。所以要优化枚举方式。
  所以可以采用哈希表,首先枚举前两个数,将可能的组合记录下来,然后再去枚举后两个数,通过查看减去前两个数后的值是否存在哈希表中,就可以得到结果。
  例如:先枚举 a , b a, b a,b,将小于等于 n n n 中的 a 2 + b 2 a^2 + b^2 a2+b2 的值记录下来,同时记录 a , b a, b a,b。然后同样的方式枚举 c , d c, d c,d,当 n − c 2 − d 2 n - c^2 - d^2 nc2d2 的值出现再前一步时,说明找到了一种方案,输出即可。
  然后就是证明这种方案一定是最小的。因为枚举 a , b 和 c , d a, b 和 c, d a,bc,d 的时候都是从小开始枚举,并且我们存的时候可以只存第一次出现的,后面的就不存,那么就可以保证一定是最小的。
  哈希表开一个数组即可。

代码

#include <iostream>
#include <cstring>

using namespace std;

const int N = 5000010;

int n;
int c[N], d[N];

int main()
{
    cin >> n;
    
    memset(c, -1, sizeof c);
    
    for ( int a = 0; a * a <= n; a ++ )
        for ( int b = a; a * a + b * b <= n; b ++ )
        {
            int s = a * a + b * b;
            if ( !~c[s] ) c[s] = a, d[s] = b;
        }
        
    for ( int a = 0; a * a <= n; a ++ )
        for ( int b = a; a * a + b * b <= n; b ++ )
        {
            int s = n - a * a - b * b;
            if ( ~c[s] )
            {
                cout << a << " " << b << " " << c[s] << " " << d[s] << endl;
                return 0;
            }
        }
    
    return 0;
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值