题目描述
四平方和定理,又称为拉格朗日定理:
每个正整数都可以表示为至多4个正整数的平方和。
如果把0包括进去,就正好可以表示为4个数的平方和。
比如:
5
=
0
2
+
0
2
+
1
2
+
2
2
5 = 0^2 + 0^2 + 1^2 + 2^2
5=02+02+12+22
7
=
1
2
+
1
2
+
1
2
+
2
2
7 = 1^2 + 1^2 + 1^2 + 2^2
7=12+12+12+22
对于一个给定的正整数,可能存在多种平方和的表示法。
要求你对4个数排序:
0
<
=
a
<
=
b
<
=
c
<
=
d
0 <= a <= b <= c <= d
0<=a<=b<=c<=d
并对所有的可能表示法按
a
,
b
,
c
,
d
a,b,c,d
a,b,c,d 为联合主键升序排列,最后输出第一个表示法
输入输出
程序输入为一个正整数
N
(
N
<
5000000
)
N (N<5000000)
N(N<5000000)
要求输出4个非负整数,按从小到大排序,中间用空格分开
例如,输入:
5
则程序应该输出:
0 0 1 2
例如,输入:
12
则程序应该输出:
0 2 2 2
再例如,输入:
773535
则程序应该输出:
1 1 267 838
资源约定
峰值内存消耗 < 256M
CPU消耗 < 3000ms
思路
数据最大是五百万,所以要控制时间复杂度在
O
(
n
l
o
g
n
)
或者
O
(
n
)
O(nlogn)或者O(n)
O(nlogn)或者O(n)。因为要求的数有四个,按照一般的想法,枚举前三个,然后计算判断第四个是否合法,因为每一次枚举都是
n
\sqrt{n}
n的,所以这个时间复杂度是
O
(
n
n
)
的
O(n\sqrt{n})的
O(nn)的,会超时。所以要优化枚举方式。
所以可以采用哈希表,首先枚举前两个数,将可能的组合记录下来,然后再去枚举后两个数,通过查看减去前两个数后的值是否存在哈希表中,就可以得到结果。
例如:先枚举
a
,
b
a, b
a,b,将小于等于
n
n
n 中的
a
2
+
b
2
a^2 + b^2
a2+b2 的值记录下来,同时记录
a
,
b
a, b
a,b。然后同样的方式枚举
c
,
d
c, d
c,d,当
n
−
c
2
−
d
2
n - c^2 - d^2
n−c2−d2 的值出现再前一步时,说明找到了一种方案,输出即可。
然后就是证明这种方案一定是最小的。因为枚举
a
,
b
和
c
,
d
a, b 和 c, d
a,b和c,d 的时候都是从小开始枚举,并且我们存的时候可以只存第一次出现的,后面的就不存,那么就可以保证一定是最小的。
哈希表开一个数组即可。
代码
#include <iostream>
#include <cstring>
using namespace std;
const int N = 5000010;
int n;
int c[N], d[N];
int main()
{
cin >> n;
memset(c, -1, sizeof c);
for ( int a = 0; a * a <= n; a ++ )
for ( int b = a; a * a + b * b <= n; b ++ )
{
int s = a * a + b * b;
if ( !~c[s] ) c[s] = a, d[s] = b;
}
for ( int a = 0; a * a <= n; a ++ )
for ( int b = a; a * a + b * b <= n; b ++ )
{
int s = n - a * a - b * b;
if ( ~c[s] )
{
cout << a << " " << b << " " << c[s] << " " << d[s] << endl;
return 0;
}
}
return 0;
}