动手深度学习-3.5 图像分类数据集

文章介绍了Fashion-MNIST数据集,它是MNIST数据集的一个更复杂版本,常用于图像分类任务。通过PyTorch框架,文章展示了如何读取和预处理数据,包括转换为Tensor、创建数据加载器以及可视化样本。同时,文章还提供了读取小批量数据的代码示例,并定义了一个加载数据的函数。
摘要由CSDN通过智能技术生成

MNIST数据集是图像分类中广泛使用的数据集之一,但作为基准数据集过于简单,我们将使用类似但更复杂的Fashion-MNIST数据集。

%matplotlib inline
import torch
import torchvision
from torch.utils import data
from torchvision import transforms
from d2l import torch as d2l
d2l.use_svg_display()

3.5.1 读取数据集

-通过框架中的内置函数将Fashion-MNIST数据集下载并读取到内存中

trans = transforms.ToTensor()
mnist_train = torchvision.datasets.FashionMNIST(root = "../data", train = True, transform = trans, download = True)
mnist_test = torchvision.datasets.FashionMNIST(root = "../data", train = False, transforms = trans, download = True)

Fashion-MNIST由10个类别的图像组成,每个类别由训练数据集的6000张图像和测试数据集中的1000张图像组成。

len(mnist_train), len(mnist_test)

每个输入图像的高度和宽度均为28像素,数据集由灰度图像组成,其通道数为1。

mnist_train[0][0].shape

Fashion-MNIST中包含10个类别,以下函数用于在数字标签索引及其文本名称之间进行转换。

def get_fashion_mnist_labels(labels):
	text_labels = ['t-shirt', 'trouser', 'pullover', 'dress', 'coat',  'sandal', 'shirt', 'sneaker', 'bag', 'ankle boot']
	return [text_labels[int(i)] for i in labels]

定义可视化样本函数

def show_images(imgs, num_rows, num_cols, titles = None, scale = 1.5):
	figsize = (num_cols * scale, num_rows * scale)
	_, axes = d2l.plt.subplots(num_rows, num_cols, figsize = figsize)
	axes = axes.flatten()
	for i, (ax, img) in enumerate(zip(axes, imgs)):
		if torch.is_tensor(img):
			ax.imshow(img.numpy())
		else:
			ax.imshow(img)
		ax.axes.get_xaxis().set_visible(False)
		ax.axes.get_yaxis().set_visible(False)
		if titles:
			ax.set_title(titles[i])
		return axes	

可视化训练数据集中的前几个样本的图像及其标签

X, y = next(iter(data.DataLoader(mnist_train, batch_size=18)))
show_images(X.reshape(18, 28, 28), 2, 9, titles=get_fashion_mnist_labels(y));

3.5.2 读取小批量

使用内置的数据迭代器读取一小批量数据。

batch_size = 256

def get_dataloader_workers():  
    return 4

train_iter = data.DataLoader(mnist_train, batch_size, shuffle=True, num_workers=get_dataloader_workers())

看一下读取训练数据所需的时间

timer = d2l.Timer()
for X, y in train_iter:
	continue
f'{timer.stop():.2f} sec'

3.5.3 整合所有组件

定义load_data_fashion_mnist函数,用于获取和读取Fashion-MNIST数据集,函数返回训练集和验证集的数据迭代器。

def load_data_fashion_mnist(batch_size, resize = None):
	trans = [transforms.ToTensor()]
	if resize:
		trans.insert(0, transforms.Resize(resize))
	trans = transforms.Compose(trans)
	mnist_train = torchvision.datasets.FashionMNIST(root = "../data", train = True, transform = trans, download = True)
	mnist_test = torchvision.datasets.FashionMNIST(root = "../data", train = False, transform = trans, download = True)
	return (data.DataLoader(mnist_train, batch_size, shuffle = True, num_workers = get_dataloader_workers()), data.DataLoader(mnist_test, batch_size, shuffle = False, num_workers = get_dataloader_workers()))

通过指定resize参数来测试load_data_fashion_mnist函数的图像大小调整功能。

train_iter, test_iter = load_data_fashion_mnist(32, resize=64)
for X, y in train_iter:
    print(X.shape, X.dtype, y.shape, y.dtype)
    break
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值