【机器学习与深度学习理论要点】9.欠拟合与过拟合概念,及如何避免?

本文详细解析了欠拟合与过拟合的概念,包括它们的表现形式、产生的原因及预防措施。针对欠拟合,文章建议通过增加特征、提升模型复杂度和调整正则化系数来改善。而对于过拟合,提出了扩增样本、降低模型复杂度、应用正则化、集成学习等多种策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1)什么是欠拟合、过拟合?

欠拟合指的是模型在训练和预测时表现都不好的情况。

欠拟合:

1. 模型复杂度不够
2. 特征太少
3. 模型层次太低

过拟合是指模型对于训练数据拟合呈过当的情况,反映到评估指标上,就是模型在训练集上表现很好,但在测试集和新数据上表现较差。

过拟合:

1. 训练数量小
2. 模型复杂度太高
3. 模型层地太深
4. 特征太多
5. 参数值太大

2)如何避免欠拟合?

  • 添加新特征。当特征不足或者现有特征与样本标签的相关性不强时,模型容易出现欠拟合。
  • 增加模型复杂度。简单模型的学习能力较差,通过增加模型的复杂度可以使模型拥有更强的拟合能力。例如,在线性模型中添加高次项,在神经网络模型中增加网络层数或神经元个数等。
  • 减小正则化系数。正则化是用来防止过拟合的,但当模型出现欠拟合现象时,则需要有针对性地减小正则化系数。

3)如何避免过拟合?

  • 扩大样本数据。使用更多的训练数据是解决过拟合问题最有效的手段,因为更多的样本能够让模型学习到更多更有效的特征,减小噪声的影响。
  • 降低模型复杂度。在数据较少时,模型过于复杂是产生过拟合的主要因素,适当较低模型复杂度可以避免模型拟合过多的采样噪声。例如,在神经网络模型中减少网络层数、神将元个数等;在决策树模型中降低输得深度、进行剪枝等。
  • 正则化方法。给模型的参数加上一定的正则约束,比如将权值的大小加入到损失函数中。
  • 集成学习方法。集成学习是把多个模型集成在一起,来降低单一模型的过拟合风险。
  • 树结构中,对数进行枝剪。
  • 减少训练迭代次数。
  • 神经网络中,加入dropout操作层。
  • 主动加入噪声数据样本。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YEGE学AI算法

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值