对于超图划分中的粗化部分的理解

超图划分一般可分为粗化、参数初始化、细化三个步骤。在粗化的过程中,超图被缩小为一个较小的图。粗化的算法可分为单层聚集和多层次聚集。

单层次聚集中仅允许两个节点合并成新的节点集,多层次则允许多个节点合并成为节点集。

这两种方法分别HCM/HCC为目标进行粗化。

HCM为net(u)∩net(v),其大致步骤为:

1、随机选取未匹配的顶点u,设为新集点;

2、随机选择u的未匹配的邻接顶点v,选择与u共享超边最多的顶点v,即max(|net(u)∩net(v)|)。

3、将v合并到集点u中。

HCC则允许多个未匹配的顶点合并到集点中。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值