超图划分一般可分为粗化、参数初始化、细化三个步骤。在粗化的过程中,超图被缩小为一个较小的图。粗化的算法可分为单层聚集和多层次聚集。
单层次聚集中仅允许两个节点合并成新的节点集,多层次则允许多个节点合并成为节点集。
这两种方法分别HCM/HCC为目标进行粗化。
HCM为net(u)∩net(v),其大致步骤为:
1、随机选取未匹配的顶点u,设为新集点;
2、随机选择u的未匹配的邻接顶点v,选择与u共享超边最多的顶点v,即max(|net(u)∩net(v)|)。
3、将v合并到集点u中。
HCC则允许多个未匹配的顶点合并到集点中。