Matlab 最小外接矩形

Matlab 中并没有发现最小外接矩形的代码,为了方便

下面提供最小外接矩形的代码: 

注:这个函数是源于网上找到的代码的改进版,原版不能检测水平线或者垂直线


function [rectx,recty,area,perimeter] = minboundrect(x,y,metric)
% minboundrect: Compute the minimal bounding rectangle of points in the plane
% usage: [rectx,recty,area,perimeter] = minboundrect(x,y,metric)
%
% arguments: (input)
%  x,y - vectors of points, describing points in the plane as
%        (x,y) pairs. x and y must be the same lengths.
%
%  metric - (OPTIONAL) - single letter character flag which
%        denotes the use of minimal area or perimeter as the
%        metric to be minimized. metric may be either 'a' or 'p',
%        capitalization is ignored. Any other contraction of 'area'
%        or 'perimeter' is also accepted.
%
%        DEFAULT: 'a'    ('area')
%
% arguments: (output)
%  rectx,recty - 5x1 vectors of points that define the minimal
%        bounding rectangle.
%
%  area - (scalar) area of the minimal rect itself.
%
%  perimeter - (scalar) perimeter of the minimal rect as found
%
%
% Note: For those individuals who would prefer the rect with minimum
% perimeter or area, careful testing convinces me that the minimum area
% rect was generally also the minimum perimeter rect on most problems
% (with one class of exceptions). This same testing appeared to verify my
% assumption that the minimum area rect must always contain at least
% one edge of the convex hull. The exception I refer to above is for
% problems when the convex hull is composed of only a few points,
% most likely exactly 3. Here one may see differences between the
% two metrics. My thanks to Roger Stafford for pointing out this
% class of counter-examples.
%
% Thanks are also due to Roger for pointing out a proof that the
% bounding rect must always contain an edge of the convex hull, in
% both the minimal perimeter and area cases.
%
%
% See also: minboundcircle, minboundtri, minboundsphere
%
%
% default for metric
if (nargin<3) || isempty(metric)
  metric = 'a';
elseif ~ischar(metric)
  error 'metric must be a character flag if it is supplied.'
else
  % check for 'a' or 'p'
  metric = lower(metric(:)');                    
  ind = strmatch(metric,{'area','perimeter'});             
  if isempty(ind)                
    error 'metric does not match either ''area'' or ''perimeter'''
  end
  
  % just keep the first letter.
  metric = metric(1);
end

% preprocess data
x=x(:);
y=y(:);

% not many error checks to worry about
n = length(x);                                    
if n~=length(y)                               
  error 'x and y must be the same sizes'
end



% if var(x)==0
    
% start out with the convex hull of the points to
% reduce the problem dramatically. Note that any
% points in the interior of the convex hull are
% never needed, so we drop them.
if n>3 
    
    %%%%%%%%%%%%%%%%%%%%%%%%%
    if (var(x)== 0|| var(y)==0)
        if var(x)== 0
            x = [x-1;x(1); x+1 ];
            y = [y ;y(1);y];
            flag = 1;
        else
            y = [y-1;y(1); y+1 ];
            x = [x ;x(1);x];
            flag = 1;
        end
        
    else
        flag = 0;
     %%%%%%%%%%%%%%%%%%%%%%
    edges = convhull(x,y);  % 'Pp' will silence the warnings
  
    end

  % exclude those points inside the hull as not relevant
  % also sorts the points into their convex hull as a
  % closed polygon
  
  %%%%%%%%%%%%%%%%%%%%
  if flag == 0 
  %%%%%%%%%%%%%%%%%%%%    
      
  x = x(edges);
  y = y(edges);
  %%%%%%%%%%%%%%%%%%
  end
  %%%%%%%%%%%%%
  % probably fewer points now, unless the points are fully convex
  nedges = length(x) - 1;                       
elseif n>1
  % n must be 2 or 3
  nedges = n;
  x(end+1) = x(1);
  y(end+1) = y(1);
else
  % n must be 0 or 1
  nedges = n;
end

% now we must find the bounding rectangle of those
% that remain.

% special case small numbers of points. If we trip any
% of these cases, then we are done, so return.
switch nedges
  case 0
    % empty begets empty
    rectx = [];
    recty = [];
    area = [];
    perimeter = [];
    return
  case 1
    % with one point, the rect is simple.
    rectx = repmat(x,1,5);
    recty = repmat(y,1,5);
    area = 0;
    perimeter = 0;
    return
  case 2
    % only two points. also simple.
    rectx = x([1 2 2 1 1]);
    recty = y([1 2 2 1 1]);
    area = 0;
    perimeter = 2*sqrt(diff(x).^2 + diff(y).^2);
    return
end
% 3 or more points.

% will need a 2x2 rotation matrix through an angle theta
Rmat = @(theta) [cos(theta) sin(theta);-sin(theta) cos(theta)];

% get the angle of each edge of the hull polygon.
ind = 1:(length(x)-1);
edgeangles = atan2(y(ind+1) - y(ind),x(ind+1) - x(ind));
% move the angle into the first quadrant.
edgeangles = unique(mod(edgeangles,pi/2));

% now just check each edge of the hull
nang = length(edgeangles);              
area = inf;                           
perimeter = inf;
met = inf;
xy = [x,y];
for i = 1:nang                         
  % rotate the data through -theta 
  rot = Rmat(-edgeangles(i));
  xyr = xy*rot;
  xymin = min(xyr,[],1);
  xymax = max(xyr,[],1);
  
  % The area is simple, as is the perimeter
  A_i = prod(xymax - xymin);
  P_i = 2*sum(xymax-xymin);
  
  if metric=='a'
    M_i = A_i;
  else
    M_i = P_i;
  end
  
  % new metric value for the current interval. Is it better?
  if M_i<met
    % keep this one
    met = M_i;
    area = A_i;
    perimeter = P_i;
    
    rect = [xymin;[xymax(1),xymin(2)];xymax;[xymin(1),xymax(2)];xymin];
    rect = rect*rot';
    rectx = rect(:,1);
    recty = rect(:,2);
  end
end
% get the final rect

% all done

end % mainline end




当然这段代码并没有获取到外接矩形的长和宽,下面我在写一个函数,就可以获得对应外接矩形的长和宽

function [ wid hei ] = minboxing( d_x , d_y )
%minboxing Summary of this function goes here
%   Detailed explanation goes here
dd = [d_x, d_y];
dd1 = dd([4 1 2 3],:);

ds = sqrt(sum((dd-dd1).^2,2));
wid = min(ds(1:2));
hei = max(ds(1:2));

end

这里默认为较短的距离为宽,较长的距离为长。


调用代码如下:注(dataX, dataY为需要计算最小外接矩形的数据。)

[recty,rectx,area,perimeter] =  minboundrect(dataX, dataY);
 [wei hei] = minboxing(rectx(1:end-1),recty(1:end-1));





评论 16
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值