Parallel.ForEach处理List导致数据丢失

是同一个dt,但执行之后的结果行数不同,代码如下:

 List<logistics_freight_bill_tbl> insertList1 = new List<logistics_freight_bill_tbl>();
            foreach (DataRow row in dt.Rows)
            {
                logistics_freight_bill_tbl info = new logistics_freight_bill_tbl();
                info.address = row["目的地"].ToString();
                insertList1.Add(info);
            }

            List<logistics_freight_bill_tbl> insertList2 = new List<logistics_freight_bill_tbl>();
            Parallel.ForEach(dt.Rows.Cast<DataRow>(), new ParallelOptions() { MaxDegreeOfParallelism = 10 }, async (row) =>
            {
                logistics_freight_bill_tbl info = new logistics_freight_bill_tbl();
                info.address = row["目的地"].ToString();
                insertList2.Add(info);
            });

insertList1 是在一个普通的 foreach<

<think>嗯,用户的问题是Parallel类在进行数据计算时遇到数据计算失败的情况,需要解决方案。首先,我需要回忆一下关于C#Parallel类的常见问题以及相关的解决方法。根据用户提供的引用,特别是引用[3]提到的List并发丢数据的问题,这可能是因为多个线程同时操作同一个集合导致的竞态条件。 用户提到他们用List收集结果,但数据丢失,这很典型是线程不安全的表现。List<T>在C#中不是线程安全的,当多个任务并发地添加元素时,可能会导致数据丢失或损坏。解决方案应该是使用线程安全的集合,比如ConcurrentBag<T>,或者使用锁机制来同步对List的访问。 另外,异常处理在并行计算中也很重要。如果某个任务抛出异常而没有正确处理,可能会导致整个并行操作中断,进而导致数据不完整。需要检查是否所有可能的异常都被捕获和处理,或者使用AggregateException来收集所有异常。 还有任务之间的依赖关系或共享资源的问题。如果任务之间有共享变量或资源,没有正确同步的话,可能会导致计算错误。需要确保共享资源被正确保护,比如使用lock关键字或者使用线程本地存储。 此外,考虑并行计算的配置,比如最大并行度设置是否合理。如果并行度过高,可能会导致资源争用,进而引发问题。调整ParallelOptions中的MaxDegreeOfParallelism可能会有帮助。 然后,根据引用[2]提到的有状态计算,如果Parallel类中的计算是有状态的,需要考虑如何管理状态。可能需要将状态隔离,每个任务处理独立的数据部分,或者使用线程安全的累加器。 最后,数据分区的问题。如果数据分区不均匀,某些任务可能处理更多的数据导致负载不均衡或超时。使用适当的分区策略,比如范围分区或块分区,可能有助于提高稳定性和性能。 总结一下,可能的解决方案包括使用线程安全集合、异常处理、同步共享资源、调整并行度、状态管理以及数据分区优化。需要逐一排查这些方面,找到具体导致失败的原因,并应用相应的解决方法。</think>针对使用C#的`Parallel`类进行数据计算时出现失败的问题,以下是分步解决方案及关键注意事项: --- ### 1. **线程安全集合替代List** 问题现象:使用`List<T>`收集结果时数据丢失 原因:`List<T>`非线程安全,并发写入导致竞态冲突 解决方案: - 使用`System.Collections.Concurrent`命名空间下的线程安全集合(如`ConcurrentBag<T>`) - 或通过`lock`关键字手动同步 ```csharp ConcurrentBag<ResultType> results = new ConcurrentBag<ResultType>(); Parallel.ForEach(dataItems, item => { ResultType result = Calculate(item); results.Add(result); }); ``` --- ### 2. **异常捕获与聚合处理** 问题现象:部分任务失败导致整体结果不完整 原因:未处理的异常会中断并行执行流程 解决方案: - 在任务逻辑中包裹`try-catch`块 - 通过`AggregateException`捕获所有异常 ```csharp try { Parallel.ForEach(dataItems, item => { try { // 计算逻辑 } catch (Exception ex) { // 记录异常 } }); } catch (AggregateException ae) { foreach (var ex in ae.InnerExceptions) { Console.WriteLine(ex.Message); } } ``` --- ### 3. **共享资源同步** 问题现象:计算结果不一致或数据损坏 原因:多个任务访问共享变量未同步 解决方案: - 对共享变量使用`lock`或`Interlocked`类 ```csharp object lockObj = new object(); int sharedCounter = 0; Parallel.For(0, 1000, i => { lock(lockObj) { sharedCounter++; } }); ``` --- ### 4. **调整并行度限制** 问题现象:高负载下任务超时或资源耗尽 原因:默认并行度可能过高导致资源争用 解决方案: - 通过`ParallelOptions`限制最大并行度 ```csharp ParallelOptions options = new ParallelOptions { MaxDegreeOfParallelism = Environment.ProcessorCount / 2 }; Parallel.ForEach(dataItems, options, item => { // 计算逻辑 }); ``` --- ### 5. **避免有状态计算设计** 问题现象:计算结果依赖历史状态时出现错误 原因:并行任务间状态管理不当(参考引用[2]有状态计算的定义) 解决方案: - 将计算逻辑设计为无状态(如纯函数) - 或使用线程本地存储(`ThreadLocal<T>`)隔离状态 ```csharp Parallel.ForEach(dataItems, () => new InitialState(), (item, loopState, localState) => { // 使用localState进行计算 return updatedLocalState; }, finalState => { // 合并最终状态 }); ``` --- ### 6. **数据分区优化** 问题现象:大数据量时性能下降或任务卡死 原因:默认分区策略不适合数据特征 解决方案: - 使用`Partitioner`自定义数据块大小 ```csharp var partitioner = Partitioner.Create(dataItems, EnumerablePartitionerOptions.NoBuffering); Parallel.ForEach(partitioner, item => { // 计算逻辑 }); ``` --- ### 典型应用场景验证 - **金融交易数据分析**:使用`Parallel`类加速处理时需结合线程安全集合和异常监控(参考引用[4]中TeZ框架的性能优化思路) - **图像批量处理**:通过调整并行度避免内存溢出 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值