统计学习方法笔记(十二)提升方法(二)

提升树

提升树是以分类树或回归树为基本分类器的提升方法
1、提升树模型
以决策树为基函数的提升方法称为提升树,对分类问题决策树是二叉分类树,对回归问题决策树是二叉回归树。提升树模型可以表示为决策树的加法模型:
fM(x)=m=1MT(x;Θm) f M ( x ) = ∑ m = 1 M T ( x ; Θ m )
其中, T(x;Θm) T ( x ; Θ m ) 表示决策树; Θm Θ m 为决策树的参数; M M 为树的个数。
2、提升树算法
首先确定初始提升树f0(x)=0 ,第m步的模型是:
fm(x)=fm1(x)+T(x;Θm) f m ( x ) = f m − 1 ( x ) + T ( x ; Θ m )
通过经验风险极小化来确定下一棵决策树的参数:
Θˆm=argminΘmi=1NL(yi,fm1(xi)+T(xi;Θm)) Θ ^ m = arg ⁡ min Θ m ⁡ ∑ i = 1 N L ( y i , f m − 1 ( x i ) + T ( x i ; Θ m ) )
(1)回归问题的提升树
回归树的模型为:
T(x;Θm)=j=1JcjI(xRj) T ( x ; Θ m ) = ∑ j = 1 J c j I ( x ∈ R j )
参数更新同上,只不过,采用了平方误差损失函数,其损失为:
L(y,fm1(x)+T(x;Θm)) =[yfm1(x)T(x;Θm)]2 =[rT(x;Θm)]2 L ( y , f m − 1 ( x ) + T ( x ; Θ m ) )   = [ y − f m − 1 ( x ) − T ( x ; Θ m ) ] 2   = [ r − T ( x ; Θ m ) ] 2
此时, yfm1(x) y − f m − 1 ( x ) 是模型拟合数据的残差,对于回归问题来说,拟合这个残差是相当简单的。
3、梯度提升
其关键在于利用损失函数的负梯度在当前模型的值 [L(y,f(xi))f(xi)]f(x)=fm1(x) − [ ∂ L ( y , f ( x i ) ) ∂ f ( x i ) ] f ( x ) = f m − 1 ( x ) 作为回归问题提升树算法中的残差的近似值,拟合一个回归树
步骤:
(1)初始化: f0(x)=argminci=1NL(yi,c) f 0 ( x ) = arg ⁡ min c ⁡ ∑ i = 1 N L ( y i , c )
(2)计算残差: rmi=[L(y,f(xi))f(xi)]f(x)=fm1(x) r m i = − [ ∂ L ( y , f ( x i ) ) ∂ f ( x i ) ] f ( x ) = f m − 1 ( x )
(3)对残差拟合回归树
(4)计算: cmj=argmincxiRmjL(yi,fm1(xi)+c) c m j = arg ⁡ min c ⁡ ∑ x i ∈ R m j L ( y i , f m − 1 ( x i ) + c )
(5)更新 fm(x)=fm1(x)+j=1JcmjI(xRmj) f m ( x ) = f m − 1 ( x ) + ∑ j = 1 J c m j I ( x ∈ R m j )
(6)得到回归树 fˆ(x)=fM(x)=m=1Mj=1JcmjI(xRmj) f ^ ( x ) = f M ( x ) = ∑ m = 1 M ∑ j = 1 J c m j I ( x ∈ R m j )

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值