前言:
本笔记仅记录《统计学习方法》中各个章节算法|模型的简要概述,比较泛泛而谈,用于应对夏令营面试可能会问的一些问题,不记录证明过程和详细的算法流程。大佬可自行绕路
材料来源:
第2版教材下载链接: 统计学习方法(第2版) | 李航 | download on Z-Library
参考笔记:
章节笔记:
章节 | 内容概况 | 重要性 |
---|---|---|
第一章:统计学习及监督学习概论 | 1)统计学习的概述、分类、三要素; 2)正则化与交叉验证; 3)生成模型与判别模型; 4)监督学习应用; 5)最大似然估计和贝叶斯估计 |
⭐⭐⭐ |
第二章:感知机 | 1)感知机概述、模型、学习策略; 2)感知机学习算法的原始形式和对偶形式; 3)缺点; 4)与神经网络发展史的联系 |
⭐⭐⭐ |
第三章: K近邻法 |