1.XGboost的参数
1)通用参数:宏观函数控制;
2)Booster参数:控制每一步的booster(tree/regression);
3)学习目标参数:控制训练目标的表现。
1.1 通用参数
booster: default gbtree 选择每次迭代的模型,有两种选择:gbtree / gbliner
nthread:用来进行多线程控制,应当输入系统的核数
1.2 Booster参数
我们这里只介绍tree booster,因为它的表现远远胜过linear booster,所以linear booster很少用到。
eta:default 0.3, 和GBM中的learning rate参数类似,通过减少每一步的权重,可以提高模型的鲁棒性;
n_estimators: 迭代次数,或者树的个数;通常选用较大的树,1000;
early_stopping_rounds:当模型训练到一个理想值时就自动停止训练,即使没有到n_estimaors指定的轮数;
learning_rate:将预测结果乘以一个因子再加到下一轮,而不是简单相加;
min_child_weight: default 1,决定最小叶子节点样本权重和;每个叶子节点的样本权重和计算方式如下: