xgboost调参指南与实战

本文详细介绍了XGBoost的参数调优,包括通用参数、Booster参数和学习目标参数,并提供了调参步骤及常见现象分析。重点讨论了如eta、n_estimators、gamma、subsample、colsample_bytree等关键参数对模型性能的影响,强调了数据清洗和特征工程的重要性。
摘要由CSDN通过智能技术生成

1.XGboost的参数

1)通用参数:宏观函数控制;

2)Booster参数:控制每一步的booster(tree/regression);

3)学习目标参数:控制训练目标的表现。

1.1 通用参数

booster: default gbtree 选择每次迭代的模型,有两种选择:gbtree / gbliner

nthread:用来进行多线程控制,应当输入系统的核数

1.2 Booster参数

我们这里只介绍tree booster,因为它的表现远远胜过linear booster,所以linear booster很少用到。

eta:default 0.3, 和GBM中的learning rate参数类似,通过减少每一步的权重,可以提高模型的鲁棒性;

n_estimators: 迭代次数,或者树的个数;通常选用较大的树,1000;

early_stopping_rounds:当模型训练到一个理想值时就自动停止训练,即使没有到n_estimaors指定的轮数;

learning_rate:将预测结果乘以一个因子再加到下一轮,而不是简单相加;

min_child_weight: default 1,决定最小叶子节点样本权重和;每个叶子节点的样本权重和计算方式如下:

       

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值