数据集之AmazonReviewDataset

本文介绍AmazonReviewDataset的不同版本及其数据字段,探讨如何利用2013版数据进行用户行为预测,包括用户对商品的评分和评论时间序列分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

版本说明

Amazon Review Dataset包含了amazon上用户对商品的评论数据,目前最新已经到2018版了,各版链接:
(1)2018:https://nijianmo.github.io/amazon/index.html
(2)2014:http://jmcauley.ucsd.edu/data/amazon/index_2014.html
(3)2013:http://snap.stanford.edu/data/web-Amazon-links.html
总的来说,数据量越来越大,数据字段越来越多啦。

数据样例

我使用2013版进行实验,至于为什么选这一版,主要是其他两版数据量太大了,虽然其他两版都有精简版本,但是精简版本没有元数据,比如商品的类别等。
在这里插入图片描述

字段说明

product/productId: asin, e.g. amazon.com/dp/B00006HAXW

product/title: title of the product

product/price: price of the product

review/userId: id of the user, e.g. A1RSDE90N6RSZF

review/profileName: name of the user

review/helpfulness: fraction of users who found the review helpful

review/score: rating of the product

review/time: time of the review (unix time)

review/summary: review summary

review/text: text of the review

用户行为预测

通常一个用户会有多条评论,如果我们取出review/userIdproduct/productIdreview/time这三列,按照(用户id,评论时间)进行聚合,就可以得到用户最新评论商品ID和用户历史评论商品id列表,即(用户id,[商品id1,商品id2,商品id3,…],当前评论商品id),进行编码转换后,数据就长这样了:
(9235, [24171, 25859, 28646, 11647, 37061], 21097)。这样我们就可以训练一个模型,根据用户历史评论行为预测用户接下来的评论商品id。

当然,我们也可以在历史行为序列中加入用户的评分等等,这样就可以预测更加丰富的内容了,比如用户对下一个商品的评分等等。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值