深度学习之Tensorflow(第一节)

Tensorflow简介

深度学习介绍

深度学习,如深度神经网络、卷积神经网络和递归神经网络已被应用,计算机视觉、语音识别、自然语言处理、音频识别与生物信息学等领域,并获取了极好的效果。
在这里插入图片描述
在这里插入图片描述
我们可以看到上图所示的现在最流行的深度学习框架。
在这里插入图片描述

认识Tensorflow

在这里插入图片描述
Tensorflow特点
在这里插入图片描述

Tensorflow的安装

在这里插入图片描述
在说安装之前,先看看上图,cpu对于计算的处理没有gpu好,在公司里面肯定是用gpu版本的tensorflow,我安装的是windows版的cpu版的tensorflow,安装过程百度上有,值得注意的是要一般选择1.x版本比较稳定,而且如果百度上面教程中地镜像变了,可以手动下载相关地压缩包,解压到自己地python目录下,要想import有效,则必须复制到lib下的site-package目录下。具体看一下这个博客:安装tensorflow(注意看该博客下面的评论)

Tensorflow初体验

普通的python加法
在这里插入图片描述
tensorflow的加法
在这里插入图片描述
tensorflow里的元素:
在这里插入图片描述
两种不同种类的框架
在这里插入图片描述

tensorflow中的图

在这里插入图片描述
哪些是op?
在这里插入图片描述
从上图我们可以看到。constant(6.0)这种写法的并不是变量,得variable这种的才表示变量。

图的创建
在这里插入图片描述
示例代码:

# 创建一张图包含了一组op和tensor,上下文环境
# op:只要使用tensorflow的API定义的函数都是OP
# tensor:就指代的是数据
g = tf.Graph()
print(g)
with g.as_default():
    c = tf.constant(11.0)
    print(c.graph)
#
# # 实现一个加法运算
a = tf.constant(5.0)
b = tf.constant(6.0)
#
sum1 = tf.add(a, b)
#
# # 默认的这张图,相当于是给程序分配一段内存
graph = tf.get_default_graph()
#
print(graph)

在这里插入图片描述
可以看到,constant类型的c属于图g,然后我们还可以打印tf默认使用的图是什么。

会话

在这里插入图片描述
使用上下文我就不用手动去close了!!
会话的run()方法
在这里插入图片描述
示例代码:

# # 不是op不能运行,也就是不能run
var1 = 2.0
var2 = 3
sum2 = var1 + var2
print(sum2)
#
# # 有重载的机制,默认会给运算符重载成op类型
sum2 = a + var1
#
print(sum2)

在这里插入图片描述
我们可以从结果看出来,当a是tensor类时,会自动将普通变量重载为tensor类,只有tensor类的元素才能放到run里。

Tensorflow Feed操作
在这里插入图片描述
在这里插入图片描述

张量(tensor)

张量的阶
在这里插入图片描述
张量的数据类型
在这里插入图片描述
张量属性
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
张量的动态形状与静态形状
在这里插入图片描述
代码如下:

# 形状的概念
# 静态形状和动态性状
# 对于静态形状来说,一旦张量形状固定了,不能再次设置静态形状, 不能夸维度修改 1D->1D 2D->2D
# 动态形状可以去创建一个新的张量,改变时候一定要注意元素数量要匹配  1D->2D  1->3D
#
plt = tf.placeholder(tf.float32, [None, 2])
#
print(plt)
#
plt.set_shape([3, 2, 1])
#
print(plt)
#
plt.set_shape([2, 3])# 不能再次修改
#
plt_reshape = tf.reshape(plt, [3, 3])
#
print(plt_reshape)

上面代码里的None是个占位符,也就是若干行,然后我通过静态设置成[3,2,1]的矩阵是不行的,因为不能跨维度。倘若我设置为[2,2]则满足要求,当满足要求后,就不能再次用静态设置去设定该形状了,动态设置可以,但要注意元素总数。
张量操作-生成张量
在这里插入图片描述
随机创建张量
在这里插入图片描述
正态分布
在这里插入图片描述
张量操作-张量变换
在这里插入图片描述
在这里插入图片描述
合并
axis指定按行还是按列合并
在这里插入图片描述
提供给Tensor运算的数学函数
参考这个链接,大体张量运算跟numpy矩阵运算类似

变量

变量是张量的一种具体形式。
在这里插入图片描述
变量的创建
在这里插入图片描述
变量的初始化

在这里插入图片描述
这就跟普通变量道理一样,定义了之后要初始化!!!
可视化学习Tensorboard
在这里插入图片描述
在这里插入图片描述
就是一个web项目,然后去监视你的tensorflow项目各个op与tensor之间的关系,以图像直观展示给我们。
图中的符号意义
在这里插入图片描述
示例代码:

# 变量op
# 1、变量op能够持久化保存,普通张量op是不行的
# 2、当定义一个变量op的时候,一定要在会话当中去运行初始化
# 3、name参数:在tensorboard使用的时候显示名字,可以让相同op名字的进行区分
a = tf.constant(3.0, name="a")
#
b = tf.constant(4.0, name="b")
#
c = tf.add(a, b, name="add")
#
var = tf.Variable(tf.random_normal([2, 3], mean=0.0, stddev=1.0), name="variable")
#
print(a, var)
#
# # 必须做一步显示的初始化op
init_op = tf.global_variables_initializer()
#
with tf.Session() as sess:
## 必须运行初始化op
 sess.run(init_op)
#
#     # 把程序的图结构写入事件文件, graph:把指定的图写进事件文件当中
#     filewriter = tf.summary.FileWriter("./tmp/summary/test/", graph=sess.graph)
#
 print(sess.run([c, var]))

在这里插入图片描述
Tensorboard观察图结构,变量显示
在这里插入图片描述
上图的意思是训练了6万次的损失值
Tensorflow运算API
在这里插入图片描述
梯度下降API
在这里插入图片描述

作用域

tensorflow变量作用域
相当于给某一段功能代码取了一个名字,有点像方法。
在这里插入图片描述
如果在之前,给变量取相同的name会出现什么样的情况?
如下如,c_1,c_2去区分。
在这里插入图片描述
tensorflow变量作用域的作用
让模型代码更加清晰,作用分明

模型保存和加载

有这么一个场景,比如说有一大堆数据,要训练很多天才能出结果,我已经训练了两天了,结果服务器宕机了,那我之前训练的岂不白弄了???如果重新开始的话又得从随机值开始训练,又得花很多时间。模型保存就是我可以设定每训练多少次我就保存一次,对我来说最重要的就是当即之前的几次训练的数据,当系统恢复后,我有从保存的数据开始训练即可!!
在这里插入图片描述
在这里插入图片描述

自定义命令行参数

这个有点像c语言里的宏,就是定义一个全局的东东,然后到处都可以用!!
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

增加变量显示

引入了tensorboard后,可以看到张量和op之间的关系,当然我们也可以增加要显示的变量,比如说每次训练的损失之类的。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

tensorflow实现一个简单的线性回归案例

在这里插入图片描述
代码示例:

# 第一个参数:名字,默认值,说明
tf.app.flags.DEFINE_integer("max_step", 100, "模型训练的步数")
tf.app.flags.DEFINE_string("model_dir", " ", "模型文件的加载的路径")

# 定义获取命令行参数名字
FLAGS = tf.app.flags.FLAGS
def myregression():
    """
    自实现一个线性回归预测
    :return: None
    """
    with tf.variable_scope("data"):
        # 1、准备数据,x 特征值 [100, 1]   y 目标值[100]
        x = tf.random_normal([100, 1], mean=1.75, stddev=0.5, name="x_data")

        # 矩阵相乘必须是二维的
        y_true = tf.matmul(x, [[0.7]]) + 0.8

    with tf.variable_scope("model"):
        # 2、建立线性回归模型 1个特征,1个权重, 一个偏置 y = x w + b
        # 随机给一个权重和偏置的值,让他去计算损失,然后再当前状态下优化
        # 用变量定义才能优化
        # trainable参数:指定这个变量能跟着梯度下降一起优化
        weight = tf.Variable(tf.random_normal([1, 1], mean=0.0, stddev=1.0), name="w")
        bias = tf.Variable(0.0, name="b")

        y_predict = tf.matmul(x, weight) + bias

    with tf.variable_scope("loss"):
        # 3、建立损失函数,均方误差
        loss = tf.reduce_mean(tf.square(y_true - y_predict))

    with tf.variable_scope("optimizer"):
        # 4、梯度下降优化损失 leaning_rate: 0 ~ 1, 2, 3,5, 7, 10
        train_op = tf.train.GradientDescentOptimizer(0.1).minimize(loss)

    # 1、收集tensor
    tf.summary.scalar("losses", loss)
    tf.summary.histogram("weights", weight)

    # 定义合并tensor的op
    merged = tf.summary.merge_all()

    # 定义一个初始化变量的op
    init_op = tf.global_variables_initializer()

    # 定义一个保存模型的实例
    saver = tf.train.Saver()

    # 通过会话运行程序
    with tf.Session() as sess:
        # 初始化变量
        sess.run(init_op)

        # 打印随机最先初始化的权重和偏置
        print("随机初始化的参数权重为:%f, 偏置为:%f" % (weight.eval(), bias.eval()))

        # 建立事件文件
        filewriter = tf.summary.FileWriter("./tmp/summary/test/", graph=sess.graph)

        # 加载模型,覆盖模型当中随机定义的参数,从上次训练的参数结果开始
        if os.path.exists("./tmp/ckpt/checkpoint"):
            saver.restore(sess, FLAGS.model_dir)

        # 循环训练 运行优化
        for i in range(FLAGS.max_step):

            sess.run(train_op)

            # 运行合并的tensor
            summary = sess.run(merged)

            filewriter.add_summary(summary, i)

            print("第%d次优化的参数权重为:%f, 偏置为:%f" % (i, weight.eval(), bias.eval()))

        saver.save(sess, FLAGS.model_dir)
    return None
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值