循证医学(Evidence-Based Medicine, 简称EBM)是一种将最佳研究证据、临床医生经验和患者意愿三者结合,以指导医疗决策的科学方法。
循证医学的目的是解决临床问题,包括发病与危险因素→认识与预防疾病;疾病的早期诊断→提高诊断的准确性;疾病的正确合理治疗→应用有疗效的措施;疾病预后的判断→改善预后,提高生存质量。合理用药和促进卫生管理及决策科学化。
以上是循证医学的一个简单介绍。
DeepSeek在循证医学的具体应用,我这里并不是说DeepSeek就可以解决循证医学的问题,而是DeepSeek和医学知识库结合起来,更精准快速的找到研究证据用以支持决策的做出。
这里的医学知识库就使用的大众所知的PubMed医学库为例,涵盖3800万+专业文献。
熟悉PubMed的都知道,有一个检索策略,通俗理解就是高级检索,比直接输入问题匹配关键词检索的更加准确:Advanced Search Results - PubMedhttps://pubmed.ncbi.nlm.nih.gov/advanced/
在不确定这个具体的检索策略的情况下,DeepSeek就起到了关键性的作用,分析问题生成相应的检索策略,检索出对应的文献后再具体分析每个文献与主题相关的证据及:试验对象、研究数量、研究结论等内容。
也可以复制PubMed官网上的检索策略在这里直接使用
检索分析后生成的结果可以看一下
证据列表部分展示
结论部分展示
参考文献部分展示
以上证据部分表格可以单独导出电子表格
或者可以整个“证据+结论+参考文献”一起,导出word文档
这个节省的时间和提升的效率,是人力完全不可及的,AI是真的提高生产力了,这个绝对不是吹的
如果有对这个感兴趣的,可以看一下这里,来尝试一下DocGPT - 第二大脑GPT加真实论文库,自动生成论文报告等,可用于科研文献分析、学术报告、编程开发、写作等各个领域https://chat.phitrellis.com/chat?quickReply=循证问答
如果想交流这个功能实现的,欢迎一起来交流经验