MCTS(蒙特卡洛树搜索)可以看作是神经网络的一个“管子”或“窗口”,通过这个“管子”,神经网络能够“窥视”到未来可能的游戏状态,并根据这些状态来调整其当前的认知和决策。
具体来说,MCTS通过模拟大量的未来游戏状态来评估每一步棋的长期期望收益。
这些模拟是基于神经网络的初步估计开始的,但MCTS会在此基础上进行更深入的搜索,探索更多可能的未来走势,并评估每种走势的潜在结果。这样,MCTS能够为神经网络提供一个更长远、更全面的视角,帮助神经网络看到超出其当前视野的“未来”。
通过这种方式,MCTS不仅提升了神经网络的决策能力,还帮助神经网络更好地学习和理解游戏的复杂性和长期策略。在每次自我对弈结束后,神经网络会根据MCTS提供的搜索概率和游戏结果来更新其参数,从而使其在未来的决策中更加准确和高效。
因此,可以将MCTS视为一个增强神经网络视野和认知能力的工具,它让神经网络能够“看到”并理解更多关于游戏状态和未来可能性的信息。