人工电磁特异材料的一些研究

背景: 材料的电磁特性就两个参数,磁导率和介电常数。大多情况下,这两个值都应该是正的。不过自然界也有极少数的材料,这两个参数在某一些频率下是负的或者等于零。 这类特意材料能够产生很多特异的效果,比如隐身,光计算等等。 这方面的研究主要分为两个方向: 怎么人造出各种特异材料。 磁导率和介电...

2019-02-23 11:40:12

阅读数 15

评论数 0

Maplab系列:共视关系筛选全局匹配

在通过描述符匹配得到的原始匹配中有大量的误匹配,结果是当前帧几乎和地图里面所有的帧都有匹配。后面通过匹配数量在地图中每帧的分布来筛除一部分错误匹配。这部分工作主要在下面函数中完成。 MatchingBasedLoopDetector::doCovisibilityFiltering 函数的一个...

2019-02-18 15:54:28

阅读数 15

评论数 0

Eigen的SSE兼容,内存分配,和std容器的兼容理解

SSE支持128bit的多指令并行,但是有个要求是处理的对象必须要在内存地址以16byte整数倍的地方开始。不过这些细节Eigen在做并行化的时候会自己处理。 但是,如果把一些Eigen的结构放到std的容器里面,比如vector,map。这些容器会把一个一个的Eigen结构在内存里面连续排放。...

2019-02-17 22:55:40

阅读数 7

评论数 0

Eigen的map函数使用

经常会处理其他数据结构和Eigen的转换,比如把opencv的mat转为eigen的matrix,或者std::vector的填入matrix。在不进行拷贝的情况下可以使用eigen的map功能进行内存映射。 不过一定注意映射后的内存不要被原结构释放了 直接上例子 int array[9];...

2019-02-17 22:28:05

阅读数 9

评论数 0

c++链接过程中undefined reference to 错误的原因

如果一个symbol没有被定义,在编译过程中就会报找不到定义的错误 如果是头文件找不到,也会直接报出头文件不存在的错误 有些时候编译出来的lib被移走了,运行的时候会直接报lib不存在的错误,或者编译的时候报找不到lib 如果链接中出现undefined reference to,有两种可能...

2019-02-16 20:02:03

阅读数 12

评论数 1

基于描述符匹配的激光点云定位

目的: 使用纯激光点云进行实时全局定位。 点云的全局匹配比较困难,即使使用NDT也只能在一个先验位置附近搜索。 NDT匹配运算量较大。 动态物体影响较大。 效果: 每次匹配在100ms左右,还有提升空间。 适用于小到100平米大到3000平米区域的全局匹配。 全局定位水平平均精度在3...

2019-02-16 14:50:39

阅读数 17

评论数 0

Maplab系列15:Inverted File

关于Inverted File的主要说明在这篇文章中:Get Out of My Lab:Large-scale, Real-Time Visual-Inertial Localization 文章说道: BOW的方法,针对超大量的描述符的时候,效果就不太好了。 KD-Tree的方法,一个是...

2019-02-15 14:32:03

阅读数 15

评论数 0

机器学习中No Free Launch说法的理解

这个说法的表面意思是不管什么机器学习的算法,在一些评判标准上来看,并没有谁更好的区别。也就是不管多么复杂的神经网络,和最简单的knn方法其实是一样的。 这句话给深度学习很唱了一下衰调,但真的是这样的吗? 这几句话更准确的表述应该是:没有一种万能的算法,能够在所有空间中都有很好的表现。 比如对...

2019-02-14 20:05:26

阅读数 31

评论数 0

Latent Variables的理解

加入我们有X,Y两个随机变量,他们的概率分布如下。要直接用一个函数还表示这个分布是比较困难的。 但我们发现这个分布可以分成三个聚类。如果我们给每个聚类编号为。 那么就是简单的高斯函数了。 这里z就是 加入latent variable的意义在于,能够把复杂的问题变成多个简单的问题的和。...

2019-02-14 19:43:01

阅读数 23

评论数 0

generative adversarial network在概率问题中的理解

对于一个多维概率联合分布,在大多数情况下,很难用一个多维函数来表示。除非这个概率分布是一个高斯函数或者多个高斯函数的和。 GAN网络正好提供了另外一个重表示多位概率分布的方法:x=f(z) 当我们穷尽所有z的值,然后把得到的所有x统计起来,就能得到x的概率分布。 具体问题是这样: 当我们有...

2019-02-14 18:58:16

阅读数 21

评论数 0

安装rTorrent

也可以这里下载稳定版本:https://github.com/rakshasa/rtorrent/wiki#users-manual 首先安装rTorrent的依赖:libtorrent sudo apt-get build-dep python-libtorrent 如果出现 E: You...

2019-02-13 15:09:49

阅读数 16

评论数 0

香浓定理和信息量的理解

10多年前的本科的信息论课上就知道了香浓定理,后面时不时这个词还会出现,但到最近其实还不太明白这个定理到底有什么用。 要理解一个定理的意义一定要回到提出它的背景中来看。我们虚构这样一个场景: 100多年前,在英国每周都会举行一个赛马比赛。每次比赛都是相同的8只马来比赛。在大西洋彼岸的纽约华尔街...

2019-02-11 23:47:51

阅读数 15

评论数 0

使用soundflower解决Mac中OBS没有电脑声音的问题

OBS是在windows,mac,linux上面通用的直播软件,功能也能强大,也非常易用。但是在mac上面使用的化,没有办法捕捉电脑发出的声音。 现象是在选择输出音频设备的时候,发现列表为空。 OBS可以捕获输入音频设备的数据(来之麦克风的数据),也可以捕获输出音频设备的数据(电脑输出到耳机或...

2019-02-09 11:01:56

阅读数 297

评论数 0

EKF协方差矩阵理解

对角元素代表整体的不确定度,画成椭圆就是和椭圆的平均半径有关。 非对角元素越大,椭圆越椭。一方面说明某些变量的相关度变大了,但本质是本来一个大大的正圆的两侧被消掉了,所以变成了椭圆,所以本质是不确定度变小了。 所以使用EKF的时候观察协方差的变化,经常是一个对角矩阵,对角元素的值越来越小,非对...

2019-01-31 23:51:55

阅读数 20

评论数 0

Probabilistic Robotics读书笔记:Recursive State Estimation

每次观察之间都是相互独立的,所以p(z|x)和历史无关。但如果问题还涉及到系统的状态。一般我们假设当前时刻的系统状态完全决定当前的观测(complete state assumption)。这里要注意的是,虽然每个时刻的观测相互独立,但是控制观测结果的系统状态在不同时刻间不是独立的。 条件概率不...

2019-01-28 10:44:13

阅读数 13

评论数 0

iSAM2: Incremental Smoothing and Mapping Using the Bayes Tree 阅读笔记

优化这样一个方程,其实就是解这个最小二乘问题,其实就是求A的逆。 这样一个问题包括几个可研究的部分 怎么把各种观测值和变量之间的关系,变成A矩阵 为啥解决一个概率的问题,但都是在处理矩阵的问题呢? 因为我们都是解决的高斯分布的随机变量。高斯分布用一个协方差矩阵和均值向量就能完全表示了。 ...

2019-01-24 14:44:24

阅读数 18

评论数 0

通过结构图计算传感器之间的外参

相关博客:https://blog.csdn.net/ziliwangmoe/article/details/84960829 假设有两个传感器B,C。我们计算C到B的变换矩阵:T_B_C。 画出每个传感器的轴向: 求C到B的变换,也就是要把C坐标系模型的的原点和三个轴在B坐标系中表...

2019-01-23 15:21:22

阅读数 61

评论数 0

矩阵分解的作用

本篇文章时对下面材料的总结: https://web.ma.utexas.edu/users/gilbert/M340L/LA07MatrixDecompositions.pdf 矩阵分解的定义: 把一个矩阵表示成多个矩阵连乘的形式。 矩阵分解主要有两个作用: 分解后的每个小矩阵能够更容易...

2019-01-21 12:11:05

阅读数 23

评论数 0

线性最小二乘,线性方程组以及广义逆的关系

对于这样一个优化问题 如果A是一个full rank的矩阵。那Ax-b=0一定有非零解。所以,这个函数的最小值就是0,对应的x就是Ax-b=0的解 如果A是一个非方阵,或者非full rank。 这个需要展开平方,使用最小二乘的方法求得最小值对应的x:x= 刚好也是非线性最小二乘每次迭代...

2019-01-21 02:08:18

阅读数 12

评论数 0

变量消元(Varible Elimination)和概率边缘化(Marginalization)的关系

先定义消元:在解线性方程组的时候,把一个变量带入到另外一个变量中,达到减少变量的就结果。 虽然方程数少了,但是单个方程变复杂了,所以其实方程组携带的信息并没有减少。 如果把方程组写成矩阵形式,就对应之前线性代数学的高斯消元。 消元的一个作用是把方程变成上三角形式,就可以很轻松的计算出方程组的...

2019-01-21 01:35:51

阅读数 23

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭