题目链接:http://acm.nyist.net/JudgeOnline/problem.php?pid=301
题目描述:
给你一个递推公式:
f(x)=a*f(x-2)+b*f(x-1)+c
并给你f(1),f(2)的值,请求出f(n)的值,由于f(n)的值可能过大,求出f(n)对1000007取模后的值。
注意:-1对3取模后等于2
解题思路:如果单纯的用递推来做的话铁定超时,因为n可能很大。因此可以将递推公式转换成矩阵来做。
由此可以联想到Fibonacci数列的递推公式:Fn = Fn − 1 + Fn − 2转换为矩阵即为:
#include<iostream>
using namespace std;
long long m,n,a,b,c,k;
long long mol=1000007;
long long x1,x2,x3;
long long y1,y2,y3;
long long z1,z2,z3;
void fun()
{
long long h=k;
if(h==1){cout<<m<<endl;return;}
if(h==2){cout<<n<<endl;return;}
long long r1=1,r2=0,r3=0;
long long s1=0,s2=1,s3=0;
long long t1=0,t2=0,t3=1;h-=2;
while(h>=1)
{
int o1,o2,o3,p1,p2,p3,q1,q2,q3;
if(h%2==1)
{
o1=(r1*x1+s1*x2+t1*x3)%mol;p1=(r1*y1+s1*y2+t1*y3)%mol;q1=(r1*z1+s1*z2+t1*z3)%mol;
o2=(r2*x1+s2*x2+t2*x3)%mol;p2=(r2*y1+s2*y2+t2*y3)%mol;q2=(r2*z1+s2*z2+t2*z3)%mol;
o3=(r3*x1+s3*x2+t3*x3)%mol;p3=(r3*y1+s3*y2+t3*y3)%mol;q3=(r3*z1+s3*z2+t3*z3)%mol;
r1=o1;r2=o2;r3=o3;s1=p1;s2=p2;s3=p3;t1=q1;t2=q2;t3=q3;
}
o1=(x1*x1+y1*x2+z1*x3)%mol;p1=(x1*y1+y1*y2+z1*y3)%mol;q1=(x1*z1+y1*z2+z1*z3)%mol;
o2=(x2*x1+y2*x2+z2*x3)%mol;p2=(x2*y1+y2*y2+z2*y3)%mol;q2=(x2*z1+y2*z2+z2*z3)%mol;
o3=(x3*x1+y3*x2+z3*x3)%mol;p3=(x3*y1+y3*y2+z3*y3)%mol;q3=(x3*z1+y3*z2+z3*z3)%mol;
x1=o1;x2=o2;x3=o3;y1=p1;y2=p2;y3=p3;z1=q1;z2=q2;z3=q3;
h/=2;
}
n=(m*r2+n*s2+t2)%mol;
n=(n+mol)%mol;
cout<<n<<endl;
}
int main()
{
int N;cin>>N;
while(N--)
{
cin>>m>>n>>a>>b>>c>>k;
x1=0;y1=1;z1=0;
x2=a;y2=b;z2=c;
x3=0;y3=0;z3=1;
fun();
}
}