Multi-Task Learning Using Uncertainty to Weigh Losses for Scene Geometry and Semantics介绍,来源知乎
- 多任务学习中,多任务网络结构的性能受每一个任务损失函数的权重影响很大。不同任务损失的尺度差异非常大,导致整体损失被某一个任务主导,最终导致其他任务的损失无法影响网络共享层的学习过程。
- 本文通过考虑每个人物之间的同方差不确定性(homoscedastic uncertainty)来设置不同任务损失函数的权值。通过这样的设置,我们就可以同时学习不同单位或尺度的回归和分类问题。
- 多任务学习的目的是通过学习多个目标之间的共享表示来提升效率、预测精度和泛化能力。场景理解算法必须同时理解某一个场景中物体的几何形状和语义信息。不同物体之间的尺度是不同的,这就涉及多任务学习中不同单位尺度物体的分类和回归问题的联合学习,将所有的任务融合到一个统一的模型中去有利于减少算力消耗和达到实时的要求。
- 每个任务的最优权重依赖于衡量尺度并且最终依赖于任务噪声的大小
- 在极端情况下,如分类A和B但在测试阶段输入C类的图片,那么分类器大概率会带来无法预知的结果。而这种错误,在容错率极低的行业,如航天、军事等领域是绝对不能容忍的。如果面对这么极端情况,在输出结果的同时给出一个较低的对结果的置信度,这个低置信度会带来预警,让人为进行干预,效果会好很多,这种置信度的输出,就靠贝叶斯建模。
- 认知不确定性(Epistemic uncertainty):是模型中的固有不确定性,由于训练数据量的不足,导致对于模型没见过的数据会有很低的置信度,认知不确定性测量的,是我们的输入是够存在于已经见过的数据的分布之中。认知不确定性解释了模型参数的不确定性。我们并不确定哪种模型权重能够最好地描述数据,但是拥有更多的数据却能降低这种不确定性。这种不确定性在高风险应用和处理小型稀疏数据时非常重要。认知不确定性可以通过增加训练数据消除。
- 偶然不确定性(Aleatoric uncertainty) 捕获了我们对数据无法解释的信息的不确定性。偶然不确定性可以通过以越来越高的精度观察所有解释变量能力来解释。
- 数据依赖型或异方差不确定性(Data-dependent or Heteroscedastic uncertainty),这种不确定性取决于输入的数据,并被预测为模型的输出。
- 任务依赖型或同方差不确定性(Task-dependent or Homoscedastic uncertainty),不依赖于输入数据,也不会是模型输出结果,而是对所有输入数据相同的常量,对不同任务不同的变量。基于这个特性,叫做任务依赖型不确定性。