python 机器学习 svm

源码地址:https://github.com/yicaifenchen8/learning.git

1.定义训练集合测试集

X = [[i, i] for i in range(20)]  # training samples
# X = [[0, 0],[0, 0], [0, 1], [1, 0]]  # training samples

# y = [i%2 for i in range(20)]  # training target
y = [i > 2 and '0' or '1' for i in range(20)]  # training target

2.训练模型

clf = svm.SVC()  # class

clf.fit(X, y)  # training the svc model

3.预测

print(clf.predict([[i, i] for i in range(20)]))

4.保存模型...

# 保存模型
joblib.dump(clf, '../res/rf.model')

# 加载模型
RF = joblib.load('../res/rf.model')

# 应用模型进行预测
result = RF.predict([[i, i] for i in range(20)])
print("result:",result)

a = 'ad' + 'bdd' + [555].__str__()+{'k':True}.__str__()
print(a)

源码地址:https://github.com/yicaifenchen8/learning.git

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值