翻译,或者总结,都是废话了,直接传ppt吧~ 总结的太好了~
下载地址:http://download.csdn.net/detail/yihaizhiyan/4878884
对此ppt的一些自我理解,随手记录之:
1、计算机感知过程:
输入数据---》特征表示---》学习算法
2、原有的一些手动设计特征,如:
SIFT、HOG、GLOH等特征~ 不是一般人都能设计出这么出色的特征的~
3、学习特征表示的关键思想:
从无标签数据中学习得到,数据的统计结构或者关联性~
在监督或者半监督设置下,学到数据的特征表示~
比如:无监督特征学习、特征学习、深度学习、表示学习等等~
4、介绍从RBM到DBN等算法的发展过程,公式等太多了,不是一句两句能多的清楚的~
简单来说,DBN可以说是多层的RBM模型~
Deep learning这种分层次的概念固然好,但是也不是越deep越好,而是有个恰当的阈值,这由经验取决~
在很大程度上deep learning和上篇讲过的Hierarchical invariant spatio-temporal features有很多思路等是相同的~
比如层次性,局部性、无监督学习等特点~
虽然deep learning很热,但是很多人搭了个顺风车而已~ 借鉴之~
所以不能盲从,理性看待思考deep learning,为什么它能取得如此好的效果?
正如当初sift特征火爆,有一拼~
很多在cv界取得比较好成就的,大多是从大脑神经视觉等来解析算法~
随着cv的发展,只能以最大可能的接近人脑思维、视觉等,难于超越~
而做好cv,更多的时候,也是要从人的视觉来思考问题,才能发现其本源,而不是沉溺于那些公式的推导~