学习Deep learning必读,CVPR2012上的PPT~

翻译,或者总结,都是废话了,直接传ppt吧~   总结的太好了~

下载地址:http://download.csdn.net/detail/yihaizhiyan/4878884

 

对此ppt的一些自我理解,随手记录之:

1、计算机感知过程:

       输入数据---》特征表示---》学习算法 

2、原有的一些手动设计特征,如:

       SIFT、HOG、GLOH等特征~        不是一般人都能设计出这么出色的特征的~ 

 

3、学习特征表示的关键思想:

      从无标签数据中学习得到,数据的统计结构或者关联性~

      在监督或者半监督设置下,学到数据的特征表示~

      比如:无监督特征学习、特征学习、深度学习、表示学习等等~ 

 

4、介绍从RBM到DBN等算法的发展过程,公式等太多了,不是一句两句能多的清楚的~

       简单来说,DBN可以说是多层的RBM模型~      

       Deep learning这种分层次的概念固然好,但是也不是越deep越好,而是有个恰当的阈值,这由经验取决~

       在很大程度上deep learning和上篇讲过的Hierarchical invariant spatio-temporal features有很多思路等是相同的~

        比如层次性,局部性、无监督学习等特点~

 

        虽然deep learning很热,但是很多人搭了个顺风车而已~  借鉴之~

        所以不能盲从,理性看待思考deep learning,为什么它能取得如此好的效果?

        正如当初sift特征火爆,有一拼~

       很多在cv界取得比较好成就的,大多是从大脑神经视觉等来解析算法~

        随着cv的发展,只能以最大可能的接近人脑思维、视觉等,难于超越~

        而做好cv,更多的时候,也是要从人的视觉来思考问题,才能发现其本源,而不是沉溺于那些公式的推导~

 

      

       

      

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值