Stable Diffusion | SD V1.6版本强势推出!这几点值得说一说,附新增9个采样方法实测

Stable Diffusion升级到V1.6版本,长话短说,主要体现三个方面:

**1、界面UI优化;

**

**2、常用功能补充;

**

3、其他。

一、版本升级

1、使用秋叶包的同学直接在启动台界面的版本管理升级即可。

img

2、官网升级:

官方仓库地址:https://github.com/AUTOMATIC1111/stable-diffusion-webui

二、功能优化

1、界面UI优化;

1、小模型(嵌入式 (T.I. Embedding)/超网络 (Hypernetworks)/大模型/Lora)位置调整了。

原来在生成图片按钮下面放了一个红色图标,用来展开和隐藏小模型,现在直接与生成图片参数设置并列的导航栏,用的时候直接点击选择即可。

img

img

2、生成图片参数设置和图片生成的窗口之间的分界线,可以用鼠标自由控制拖动。

img

3、图片生成窗口下面的UI图标做了简化更新,这个更新到底好不好各有说法。

img

4、预设样式按钮和将预设样式应用到提示词窗口按钮合并一起了,就是这支笔。同时添加功能是,可以直接在界面编辑预设样式提示词,不用到之前的主目录中的styles.csv文件中编辑。

使用预设样式时,先选中自己要用的预设样式,然后点击后面这支笔,可以编辑对应的样式,

img

弹出提示词编辑窗口,这里用gif简单演示一下,

img

2、常用功能补充

1、采样方法,增加了9种:

  • DPM++ 2M SDE Exponential
  • DPM++ 2M SDE Heun
  • DPM++ 2M SDE Heun Karras
  • DPM++ 2M SDE Heun Exponential
  • DPM++ 3M SDE
  • DPM++ 3M SDE Karras
  • DPM++ 3M SDE Exponential
  • LMS Karras
  • Restart

img

下面我们来测试一下这9个采样方法在不同步数下的图片效果, 这里就以人脸为例,其他的效果大家可以自行测试。9个采样方法,采样步数:10,20,30,40,50,用XYZ轴脚本。

img

生成图片,下面是测试长图,为了能更好的看到不同采样步数的图片效果,这里就不做缩放了。

第一组

  • DPM++ 3M SDE

  • DPM++ 3M SDE Karras

  • DPM++ 3M SDE Exponential

img

第二组

  • DPM++ 2M SDE Heun

  • DPM++ 2M SDE Heun Karras

  • DPM++ 2M SDE Heun Exponential

img

第三组

  • DPM++ 2M SDE Exponential
  • LMS Karras
  • Restart

img

令人惊艳的是Restart,步数从10到50都是保持高质量的效果。

而DPM++ 2M SDE Heun Karras,在步数为40-50的时候,表现出来的效果也可以。

这里是以真实模型以及人像为例,大家可以自行测试其他风格。

2、高分辨率修复 (Hires. fix)窗口

这个窗口增加了一个高分模型和高分采样方法。

就是在放大图片的同时,进行重绘图片。可以理解为图生图的操作,比如先用大模型生成一个图片,然后在高分辨率里面设置其他的模型和风格,进行二次生成,得到最终的图片效果。

模型和采样方法下面可以填写想要重绘的内容提示词,也可以不填,不填就是保持底模提示词不变。这里我们可以填入LoRA,效果就会比原来直接放在底模提示词里面效果会好一些。

img

我们来演示一下,现在的需求是,我们想要一个模型的构图和样式,另一个模型的画风和氛围,以前我们现在文生图中先生成构图,然后再到图生图中进行油画风格,而现在我们可以使用高分模型进行一步到位。

这里选择墨幽人造人生成人像构图,然后用高分模型动漫化。

第一步,底模我们选择一个构图和泛化性比较好的模型:墨幽人造人.safetensors,

img

第二步,为了示例对比明显,这里高分模型选择风格化明显的迪士尼卡通模型:disneyPixarCartoon_v10-迪士尼&皮克斯。

img

点击生成图片,

img

可以看到前部分模型风格写实化形成了构图场景,后面部分在放大图片的同时按照新的模型,重绘图片风格化。

不想使用高分辨率修复,可以把放大倍数值调为1。

img

另外要说明一点,

这个窗口默认更新是没有的,需要重新设置一下:设置-用户界面-最下面的高分辨率修复两个选项打勾,

img

保存设置,重启SD,就会出现这个界面。

3、支持refiner:

SDXL 采用了一种两步走的生图方式,

  • Base模型

这个Base模型就是用来生成词语生成图片的

  • Refiner模型

这个refiner就是一个图片生成图片的,相当于是对生成图片进行一个优化

img

在高分辨率修复 (Hires. fix)后面加了一个Refiner窗口,

img

展开窗口可以看到两个选项,模型和切换时机,

模型可以选想要二次优化的风格方向的模型,

切换时机就是二次风格化图形时的切入时间,范围0-1,切换步数等于切换时机值:0.8x迭代步数(Steps)值:20等于16,即当第一个基础模型采样到第16步时,Refiner模型可以介入,到20步完成为止。

3、其他。

官网更新日志:https://github.com/AUTOMATIC1111/stable-diffusion-webui/releases/tag/v1.6.0

img

1、内存占用优化,SDXL 模型使用的内存大幅下降。

img

2、可以为每个模型选择VAE。

img

3、支持多种显卡。

img

下面是官网的主要升级部分翻译部分,有兴趣的可以自行了解下。

  • 精简程序支持 #12371
  • 为随机数生成器源设置添加NV选项,允许在CPU / AMD / Mac上生成与NVidia显卡相同的图片
  • “添加样式编辑器”对话框
  • 雇用修复:添加一个选项以使用不同的检查点进行第二次传递 (#12181)
  • 在内存中保留多个加载模型的选项 (#12227)
  • 新采样器:重新启动, DPM++ 2M SDE 指数, DPM++ 2M SDE Heun, DPM++ 2M SDE Heun Karras, DPM++ 2M SDE Heun 指数, DPM++ 3M SDE, DPM++ 3M SDE Karras, DPM++ 3M SDE 指数 (#12300, #12519, #12542)
  • 返工DDIM,PLMS,UniPC以使用与k扩散采样器相同的CFG降噪器:
  • 使它们都与img2img一起工作
  • 使快速组合成为可能(AND)
  • 使它们可用于 SDXL
  • 始终在 UI 中显示额外的网络选项卡 (#11808)
  • 创建模型时使用较少的 RAM(#11958、#12599)
  • SDXL 的文本反转推理支持
  • 额外网络 UI:显示 SD 检查点的元数据
  • 检查点合并:添加元数据支持
  • 提示编辑和注意:在数字后添加对空格的支持 ([ 红色 :绿色 :0.5 ]) (种子中断更改) (#12177)
  • VAE:允许为每个检查点选择自己的VAE(在用户元数据编辑器中)
  • VAE:将选定的VAE添加到信息文本
  • 主UI中的选项:为txt2img和img2img添加自己的单独设置,从粘贴的信息文本中正确读取值,为列计数添加设置(#12551)
  • 将调整大小手柄添加到 TXT2IMG 和 IMG2IMG 选项卡,允许更改为生成参数和生成的图像库提供的地平线表空间量(#12687、#12723)
  • 更改批处理 cond/uncond 的默认行为 - 现在它默认处于打开状态,并且被 UI 设置禁用(Optimizatios -> 批处理 cond/uncond) - 如果您在 lowvram/medvram 上并且收到 OOM 异常,则需要启用它
  • 显示队列中的当前位置,并使其按到达顺序处理请求 (#12707)
  • 添加仅适用于 SDXL 模型的标志–medvram-sdxl–medvram
  • 提示编辑时间线对首次通过和雇用修复传递(种子突破性更改)具有单独的范围 (#12457)

关于AI绘画技术储备

学好 AI绘画 不论是就业还是做副业赚钱都不错,但要学会 AI绘画 还是要有一个学习规划。最后大家分享一份全套的 AI绘画 学习资料,给那些想学习 AI绘画 的小伙伴们一点帮助!

对于0基础小白入门:

如果你是零基础小白,想快速入门AI绘画是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以找到适合自己的学习方案

包括:stable diffusion安装包、stable diffusion0基础入门全套PDF,视频学习教程。带你从零基础系统性的学好AI绘画!

零基础AI绘画学习资源介绍

👉stable diffusion新手0基础入门PDF👈

(全套教程文末领取哈)
在这里插入图片描述

👉AI绘画必备工具👈

在这里插入图片描述

温馨提示:篇幅有限,已打包文件夹,获取方式在:文末

👉AI绘画基础+速成+进阶使用教程👈

观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

在这里插入图片描述

温馨提示:篇幅有限,已打包文件夹,获取方式在:文末

👉12000+AI关键词大合集👈

在这里插入图片描述

这份完整版的AI绘画全套学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

### Stable Diffusion 中的采样方法详解 #### 一、采样的概念 在 Stable Diffusion 中,每个步骤都会生成一张新的采样后的图像。整个去噪过程即是采样,在这一过程中所采用的技术被称为采样器采样方法[^2]。 #### 二、主要采样方法介绍 ##### (一)DDIM (去噪扩散隐式模型) 作为最早期专为扩散模型设计的采样器之一,DDIM 提供了一种有效的方式来进行高质量图片合成。该算法通过控制噪声逐步减少来实现图像生成的目标。其特点在于能够提供更加平滑的结果过渡,并允许用户自定义生成路径中的某些参数设置[^3]。 ```python from diffusers import DDIMPipeline pipeline = DDIMPipeline.from_pretrained('model_name') image = pipeline(prompt="a photograph of an astronaut riding a horse").images[0] ``` ##### (二)PLMS (伪线性多步法) 这是基于 DDIM 进一步优化而来的版本,旨在提高计算效率的同时保持甚至提升最终输出的质量。相较于前者而言,它能够在更短时间内完成相同质量级别的渲染工作,因此成为许多应用场景下的首选方案。 ```python from diffusers import PNDMPipeline pipeline = PNDMPipeline.from_pretrained('model_name') image = pipeline(prompt="a photograph of an astronaut riding a horse", num_inference_steps=50).images[0] ``` 除了上述两种经典的方法之外,还有其他多种新型高效的采样技术不断涌现并被集成到最新的框架版本当中,比如 Euler A, Heun's method 等等,它们各自具有独特的优势适用于不同类型的任务需求。 #### 三、如何选择适合自己的采样方式? 当面对众多可选方案时,可以根据具体项目的要求和个人偏好做出决定: - 如果追求极致画质而不考虑速度因素,则可以选择较为保守但稳定的选项如 DDIM; - 对于实时交互类应用来说,优先考虑那些能在较短时间里给出满意成果的选择像 PLMS 或者更新颖快速收敛型别的采样策略; 总之,在实际操作前最好先尝试几种不同类型的配置组合进行对比测试,从而找到最适合自己场景的最佳实践模式。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值