决策树回归器

决策树回归器模型API:

import sklearn.tree as st

#创建决策树回归模型,  决策树最大深度为4

model=st.DecisionTreeClassifier(max_depth=4)
#训练模型
#  train_x:二维数组样本数据
#  train_y:训练集中对应每行样本的结果

model.fit(train_x,train_y)
#预测模型
pred_test_y=model.predict(test_x)

预测房价:

import sklearn.datasets as sd
import sklearn.utils as su
import sklearn.tree as st
import sklearn.metrics as sm
import numpy as np


boston=sd.load_boston()
#拆分训练集与测试集
x,y=su.shuffle(
    boston.data,boston.target,random_state=7)
train_size=int(len(x)*0.8)

train_x,test_x,train_y,test_y=x[:train_size],x[train_size:],y[:train_size],y[train_size:]

#构建决策树模型

model=st.DecisionTreeRegressor(max_depth=4)
model.fit(train_x,train_y)

pred_test_y=model.predict(test_x)

#评估结果
r=sm.r2_score(test_y,pred_test_y)
print(r)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值