CNN笔记

  1. BN(Batch Normalization)层原理与作用

    • 作用:
      • 加速网络的收敛速度
      • 让网络训练变得容易
      • 简化调参过程
      • 提高网络泛化能力,抑制过拟合(争议)
  2. 1*1卷积核的作用

  3. 全连接层

  4. padding

    1. pytorch的padding的理解和操作
      • feature map大小就是边长,feature map数量才是滤波器数量。边长计算遵从公式
  5. 【CNN】理解卷积神经网络中的通道 channel

    • 深度、通道(channels)、卷积核数量、feature map

    • 计算:

      • 卷积核中的27(长*宽*channels)个数字与分别与样本对应相乘后,再进行求和

      • 深度最后要加在一起

      • 多个卷积核导致深度增加

    • channels分类:

      1. 最初输入的图片样本的 channels ,取决于图片类型,比如RGB;
      2. 卷积操作完成后输出的 out_channels ,取决于卷积核的数量。此时的 out_channels 也会作为下一次卷积时的卷积核的 in_channels;
      3. 卷积核中的 in_channels ,刚刚2中已经说了,就是上一次卷积的 out_channels ,如果是第一次做卷积,就是1中样本图片的 channels 。
  6. 特征

    1. 理解卷积神经网络CNN中的特征图 feature map

         1. 除了第一次输入,其他 feature map就是每层的深度(channels)。见”[channels分类]()“
         2. “所以假设我们加到100种滤波器,每种滤波器的参数不一样,表示它提出输入图像的不同特征,例如不同的边缘。这样每种滤波器去卷积图像就得到对图像的不同特征的放映,我们称之为 Feature Map”
         3. 隐层的参数个数和隐层的神经元个数无关,只和滤波器的大小和滤波器种类的多少有关
         4. 隐层的神经元个数和原图像,也就是输入的大小(神经元个数)、滤波器的大小和滤波器在图像中的滑动步长都有关。
      
    2. 特征融合(文章写的不赖)

      1. 融合不同尺度的特征是提高分割性能的一个重要手段。很多工作通过融合多层来提升检测和分割的性能

          - 低层特征分辨率更高,包含更多位置、细节信息,但是由于经过的卷积更少,其语义性更低,噪声更多。
          - 高层特征具有更强的语义信息,但是分辨率很低,对细节的感知能力较差。
        
      2. 特征融合方法介绍:

        • 早融合(Early fusion): 先融合多层的特征,然后在融合后的特征上训练预测器(只在完全融合之后,才统一进行检测)。这类方法也被称为skip connection,即采用concat、add操作。这一思路的代表是Inside-Outside Net(ION)和HyperNet。 两个经典的特征融合方法:
          • concat:系列特征融合,直接将两个特征进行连接。两个输入特征x和y的维数若为p和q,输出特征z的维数为p+q;
          • add:并行策略,将这两个特征向量组合成复向量,对于输入特征x和y,z = x + iy,其中i是虚数单位。
        • 晚融合(Late fusion):通过结合不同层的检测结果改进检测性能(尚未完成最终的融合之前,在部分融合的层上就开始进行检测,会有多层的检测,最终将多个检测结果进行融合)。这一类研究思路的代表有两种:
          • feature不融合,多尺度的feture分别进行预测,然后对预测结果进行综合,如Single Shot MultiBox Detector (SSD) , Multi-scale CNN(MS-CNN)
          • feature进行金字塔融合,融合后进行预测,如Feature Pyramid Network(FPN)等。
      3. 特征融合方法汇总:

        1. 早融合:用经典的特征融合方法:在现有的网络(如VGG19)中,用concat或add融合 其中的某几层;
          • FCN、Hypercolumns—>add
          • Inside-Outside Net(ION)、 ParseNet 、HyperNet—>concat
          • 变种:用DCA特征融合方法代替concat和add操作;
        2. 晚融合:
          1. 采用类似特征金字塔网络(FPN)的思想,对特征融合后进行预测。 (FPN一般用于目标检测,提高小目标检测能力) 三个变种:
            • YOLO2的方法,只在金字塔的top-down路径的最后一层进行预测,此外还有 U-Net [31] and SharpMask for segmentation, Recombinator networks for face detection, and Stacked Hourglass networks for keypoint estimation.
            • YOLO3的方法,在金字塔的每一层都进行预测
            • FSSD的方法,对 FPN进行细微改造
          2. feature不融合,多尺度的feture分别进行预测,然后对预测结果进行综合,如Single Shot MultiBox Detector (SSD) , Multi-scale CNN(MS-CNN)
        3. 用一个具有高低特征融合能力的网络替代普通的网络,如Densenet;
        4. 不进行高低层特征融合,而是在高层特征预测的基础上,再用底层特征进行预测结果的调整
      4. YOLOv3——引入:FPN+多尺度检测 (目标检测)(one-stage)(深度学习)(CVPR 2018)

        YOLO v3采用上采样和融合做法,融合了3个尺度(13*13、26*26和52*52),在多个尺度的融合特征图上分别独立做检测,最终对于小目标的检测效果提升明显。

        1. FPN
        2. one-stage
  7. 基础概念:

    1. 目标分割 ——>目标检测 ——>目标识别 ——>目标跟踪

      • 目标分割:像素级的对前景与背景进行分类,将背景剔除;
      • 目标检测:定位目标,确定目标位置及大小;
      • 目标识别:定性目标,确定目标是什么;
      • 目标跟踪:追踪目标运动轨迹。
    2. 查准率、查全率与F1

      • TP+FP+TN+FN = 样例总数

      • 情况预测结果
        正例反例
        真正例 true positive假反例 false negative
        假正例 false positive真反例 true negative
        • 真实情况预测结果相同?真(true):假(false);

        • 正例(positive)与反例(negative)取决于预测结果

      • 查准率: P = T P T P + F P P = \frac{TP}{TP+FP} P=TP+FPTP

      • 查全率: R = T P T P + F N R = \frac{TP}{TP+FN} R=TP+FNTP

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值