循环神经网络知识框架

本文深入探讨循环神经网络(RNN)的结构与工作原理,包括循环体现在隐藏层连接、RNN的应用场景(序列到类别、序列到序列)、参数学习问题。重点介绍了门控循环神经网络,如LSTM和GRU,解释它们如何解决长程依赖问题,并对比了LSTM与简单RNN的区别。最后讨论了多层RNN和双向RNN的概念。
摘要由CSDN通过智能技术生成

循环体现在哪里?

体现在隐藏层之间的连接中。普通神经网络的隐藏层没有连接。RNN为了提取时序数据之间的关系,让 t t t 时刻的隐藏层状态受到上一时刻 h t − 1 h_{t-1} ht1 的影响。

在这里插入图片描述
在时间上展开:

在这里插入图片描述

h t = f ( U h t − 1 + W x t + b ) h_t = f(Uh_{t-1}+Wx_{t}+b) ht=f(Uht1+Wxt+b)

可以看出公式中蕴含的递归关系。 h 0 h_0 h0 需要初始化。

RNN的几种应用

RNN输出什么?

p y t o r c h pytorch pytorch 为例,输出两个值。

  • t t t 个时刻的最后一层隐藏层状态。
  • 最后一个时刻的各个循环层的状态。
    在这里插入图片描述

用这些输出可以做什么?

序列到类别

每个 h t h_t ht 代表着该时刻的信息和历史信息。

可以认为 h T h_T hT 蕴藏着整个序列的信息。将它作为一个分类器的输入,可以输出标签。(也可以同时应用 h 1 h_1 h1~ h T h_T hT

在这里插入图片描述

序列到序列

输入序列和输出序列长度相同,如文本标注。利用每个 h t h_t ht

在这里插入图片描述
输入和输出长度不同,如翻译。利用 h T h_T hT

编码:得到 h

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值