pandas 中dataframe 选择列后 fillna() 使用inplace参数

pandas 中dataframe 选择列后 fillna() 使用inplace参数,不改变源数据。

df4=pd.DataFrame(data=np.arange(0,20).reshape(5,4),columns=['c1','c2','c3','c4'],index=range(0,5))
df4.loc[2,'c2']=np.nan
df4

df4为

    c1	 c2	 	c3	 c4
0	0	1.0		 2	 3
1	4	5.0		 6	7
2	8	NaN		10	11
3	12	13.0	14	15
4	16	17.0	18	19

举例,

df4[['c1','c2','c3']].fillna(0,inplace=True,)
df4

输出为


	c1	c2		c3	c4
0	0	1.0		2	3
1	4	5.0		6	7
2	8	NaN		10	11
3	12	13.0	14	15
4	16	17.0	18	19

推测 df4[[‘c1’,‘c2’,‘c3’]] 已生成一个新的dataframe.
显式赋值方法就可以。

df4[['c1','c2','c3']] = df4[['c1','c2','c3']].fillna(0)
df4
	c1	c2		c3	c4
0	0	1.0		2	3
1	4	5.0		6	7
2	8	0.0		10	11
3	12	13.0	14	15
4	16	17.0	18	19
<think>好的,我现在需要帮助用户详细了解pandasDataFramefillna方法的各个参数使用。首先,我得回忆一下fillna的基本语法和参数。用户要求分成四个部分:基本语法、参数说明表格、应用场景和注意事项。 首先,基本语法部分。fillna是用于填充缺失值的,基本调用是df.fillna(value, method, axis, inplace, limit, downcast)。需要确认这些参数的顺序是否正确,可能得查一下官方文档确认。比如,value可以是标量、字典、Series或DataFrame,这个要说明清楚。 接下来是参数说明的表格。参数包括value、method、axis、inplace、limit、downcast。每个参数的作用、默认值、可选值都需要出来。比如method有'ffill'和'bfill',axis是0或1,inplace是布尔值,limit是整数,downcast是字典或‘infer’。需要注意,method和value不能同时使用,这个得在注意事项里提到。 然后是典型应用场景。常见的比如用固定值填充,比如用0填充缺失值;向前或向后填充,适用于时间序数据;用不同的均值填充,或者用每的平均值填充。这些例子需要具体说明,比如fillna(0)、fillna(method='ffill'),或者fillna(df.mean())。 注意事项部分,要强调method和value不能同时使用inplace会修改原数据,limit的作用是在指定方向上连续填充的最大数量,以及downcast用于类型转换。可能还要提到处理大数据时的性能问题,或者填充策略选择不当的影响。 需要检查是否有遗漏的参数或者最新的更新,比如pandas版本不同是否有参数变化。例如,downcast在某些版本中可能不常用,或者是否有新增的参数。需要确保信息的准确性。 可能用户在实际使用中会遇到的问题,比如填充后数据是否一致,如何处理不同的填充需求,这时候可以用字典或不同的value类型。比如,用字典指定每的填充值,或者用另一个DataFrame来匹配填充。 最后,结构要清晰,分点明确,用表格展示参数,这样用户容易查阅。同时,语言要简洁,避免过于技术性的术语,让不同水平的用户都能理解。</think># pandas.DataFrame.fillna方法详解 ## 一、基本语法 ```python DataFrame.fillna( value=None, # 填充值 method=None, # 填充方式 axis=None, # 填充方向 inplace=False, # 是否原地修改 limit=None, # 最大填充次数 downcast=None # 数据类型降级 ) ``` ## 二、参数说明 | 参数 | 类型 | 默认值 | 说明 | |------|------|--------|------| | value | 标量/字典/Series/DataFrame | None | 填充的数值,支持不同数据类型和结构 | | method | {'ffill', 'bfill', None} | None | 填充方式:向前填充(ffill)或向后填充(bfill) | | axis | {0或'index', 1或'columns'} | None | 填充方向:0按填充,1按行填充 | | inplace | bool | False | True直接修改原对象,False返回新对象 | | limit | int | None | 最大连续填充次数 | | downcast | dict或'infer' | None | 自动向下转换数据类型 | ## 三、典型应用场景 ### 1. 固定值填充 ```python # 用0填充所有缺失值 df.fillna(0) # 分指定填充值 df.fillna({'A': 0, 'B': 'missing'}) ``` ### 2. 时间序填充 ```python # 向前填充(使用前一个有效值) df.fillna(method='ffill') # 向后填充(使用后一个有效值) df.fillna(method='bfill', axis=0) ``` ### 3. 智能填充 ```python # 用均值填充 df.fillna(df.mean()) # 用前3行的均值填充 df.fillna(df.rolling(3).mean()) ``` ## 四、注意事项 1. **参数互斥规则** - `value`和`method`参数不可同时使用 - 需明确选择填充策略:固定值填充或插值填充 2. **数据修改方式** - 默认返回新对象(`inplace=False`) - 设置`inplace=True`会修改原数据且返回None 3. **填充方向控制** - `axis=0`纵向填充(默认):同一内填充 - `axis=1`横向填充:同一行内填充 4. **性能优化** - 大数据集建议使用`method='ffill'`而非复杂计算 - 使用`downcast='infer'`可优化内存占用 5. **特殊场景处理** - 时间序建议先排序再填充 - 分类数据应使用对应类型的填充值 > **扩展技巧**:可结合`interpolate()`方法实现线性插值等更复杂的填充策略,处理有序数据的缺失值时效果更优。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值