sort_values()函数对dataframe数据框进行排序,其中参数inplace=True和inplace=False的区别+实例讲解

本文详细解释了Pandas的sort_values()函数中inplace参数的作用,区分了inplace=True和inplace=False两种情况,以及它们对数据框排序的影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

       本篇主要用例子来介绍一下在使用sort_values()函数对dataframe数据框进行排序时,其中参数inplace=True和inplace=False的区别。

     总的来说:

 inplace参数在sort_values()函数中用于控制排序结果是否直接修改原始数据框。

    当inplace=True时,排序结果会直接修改原始数据框;

    当inplace=False(默认值)时,排序结果会返回一个新的数据框,而原始数据框不会发生改变。

    举个例子:

(一)创建数据

import pandas as pd

# 创建一个数据框
data = {'A': [3, 1, 2], 'B': [6, 10, 5]}
df = pd.DataFrame(data)

结果如下:

 (二)inplace=False

# 使用sort_values()函数对数据框进行排序,不改变原始数据框
df.sort_values(by='A', inplace=False,ascending=False)

结果如下:

这段代码:

ascending=False表示降序排序

by='A'表示按照名称为A的这一列数据进行降序排序

inplace=False表示不改变原始数据框(具体什么意思呢,请看下边)

print("原始数据框:")
print(df)

在排完序后,原始的df数据并没有被排序后的数据覆盖,打印print(df)仍然能够输出排序前的原始数据,如下:

(三)inplace=True

# 使用sort_values()函数对数据框进行排序,直接修改原始数据框
df.sort_values(by='B', inplace=True,ascending=False)

df

结果如下:

这段代码:

ascending=False表示降序排序

by='B'表示按照名称为B的这一列数据进行降序排序

inplace=False表示排序结果会直接修改原始数据框(具体什么意思呢,请看下边)

也就是在排完序后,原始的df数据被排序后的数据覆盖,打印print(df)输出的是排序后的结果,如下:

print("原始数据框(已修改):")
print(df)

 补充:
①df.sort_values(by='A', inplace=False,ascending=False)

会直接出排序结果,因为是排序结果会返回一个新的数据框,而原始数据框不会发生改变。

②df.sort_values(by='B', inplace=True,ascending=False)

并不会直接出排序结果,需要打印输出一下df,才能看到排序结果。

### 排序方法概述 Pandas 提供了多种方式对 `DataFrame` 中的数据进行排序。主要通过 `.sort_values()` `.sort_index()` 方法实现。 #### 1. 使用 `.sort_values()` 对指定列排序 `.sort_values()` 是一种基于列值的排序方法,允许按照一列或多列的升序或降序排列数据。其语法如下: ```python df.sort_values(by=['column_name'], ascending=True, inplace=False) ``` 其中: - 参数 `by` 表示要按哪一列或者哪些列进行排序; - 参数 `ascending` 控制是否为升序,默认为 `True`; - 参数 `inplace` 决定是否修改原 `DataFrame` 的顺序[^1]。 下面展示一个具体的例子: ```python import pandas as pd data = {'name': ['Alice', 'Bob', 'Charlie', 'David'], 'age': [25, 32, 18, 47], 'gender': ['F', 'M', 'M', 'M']} df = pd.DataFrame(data) sorted_df = df.sort_values(by='age') # 默认升序 print(sorted_df) ``` 上述代码会根据年龄从小到大重新排列记录[^1]。 如果希望同时依据多列进行复杂排序,则可以通过传递列表给参数 `by` 实现。例如先按性别再按年龄排序: ```python multi_sorted_df = df.sort_values(by=['gender', 'age']) print(multi_sorted_df) ``` 此段代码首先比较性别字段,当性别相同时继续对比年龄大小完成最终排序结果[^2]。 #### 2. 利用 `.sort_index()` 进行索引排序 除了基于列的内容外,还可以利用 `.sort_index()` 函数针对当前对象的标签(即索引)执行排序动作。默认情况下是从低至高依次列举各个条目;设置参数 `ascending=False` 可改变这一行为使其反向操作[^3]。 实例演示如下所示: ```python index_sorted_df = df.sort_index(ascending=False) print(index_sorted_df) ``` 以上命令将使原始框架内的项目依照它们原本所在位置编号逆序展现出来。 ### 性能优化提示 对于大规模数据集,在循环内部逐项访问单元格可能效率低下。推荐采用矢量化运算代替显式的 Python 循环逻辑。比如计算正负数值总时可考虑使用布尔掩码配合 NumPy 或 Pandas 自带功能达成目的而非逐一迭代每一行[^4]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值