(笔记)细颗粒度的三值网络Ternary Neural Networks with Fine-Grained Quantization

该博客介绍了无需训练的三值神经网络(Ternary Neural Networks)方法,通过8/4位激活函数实现权重量化。文章详细阐述了如何将32位浮点权重转化为{-α, 0, α},并分析了最佳的分组策略。实验结果显示,使用该方法在ResNet-101和ResNet-50上仅导致Top1准确率轻微下降,且简化了硬件实现。" 8530976,512944,Oracle EBS自动化测试:OpenScript详解,"['Oracle 应用测试套件', '自动化测试工具', 'OpenScript', 'EBS自动化', 'Java 脚本']
摘要由CSDN通过智能技术生成

原文链接

https://arxiv.org/abs/1705.01462

摘要

提出一种三值化方法,激活函数是8/4bit的,不需要训练,对N个权重量化到三值 ,N=2,4,8,16等等。当N=4时,ResNet-101和ResNet-50的Top1准确率分别下降3.7%和4.2%。

方法

目的:不训练地,把32bit浮点权重 W W 量化为 { α , 0 , α }
基于阈值

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值