原文链接
https://arxiv.org/abs/1705.01462
摘要
提出一种三值化方法,激活函数是8/4bit的,不需要训练,对N个权重量化到三值 ,N=2,4,8,16等等。当N=4时,ResNet-101和ResNet-50的Top1准确率分别下降3.7%和4.2%。
方法
目的:不训练地,把32bit浮点权重 W W 量化为
。
基于阈值
该博客介绍了无需训练的三值神经网络(Ternary Neural Networks)方法,通过8/4位激活函数实现权重量化。文章详细阐述了如何将32位浮点权重转化为{-α, 0, α},并分析了最佳的分组策略。实验结果显示,使用该方法在ResNet-101和ResNet-50上仅导致Top1准确率轻微下降,且简化了硬件实现。"
8530976,512944,Oracle EBS自动化测试:OpenScript详解,"['Oracle 应用测试套件', '自动化测试工具', 'OpenScript', 'EBS自动化', 'Java 脚本']
https://arxiv.org/abs/1705.01462
提出一种三值化方法,激活函数是8/4bit的,不需要训练,对N个权重量化到三值 ,N=2,4,8,16等等。当N=4时,ResNet-101和ResNet-50的Top1准确率分别下降3.7%和4.2%。
目的:不训练地,把32bit浮点权重 W W 量化为
。
基于阈值

被折叠的 条评论
为什么被折叠?
细颗粒度的三值网络Ternary Neural Networks with Fine-Grained Quantization&spm=1001.2101.3001.5002&articleId=80548183&d=1&t=3&u=e91dd4c03ca842388031137b5103cedb)