(笔记)网络压缩量化,训练三值量化TRAINED TERNARY QUANTIZATION

该博客介绍了训练三值网络的方法,通过32bit浮点数映射到三值{-Wnl, 0, Wpl},提升AlexNet在ImageNet上的性能0.3%,并探讨了稀疏度对网络效果的影响,指出30%~50%的稀疏度最佳。" 120680957,9334386,Go实战:Gin+Gorm构建备忘录应用,"['Go开发', 'RESTful API', '数据库设计', 'Web开发', 'Gin']
摘要由CSDN通过智能技术生成
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值