将人工智能引入卡尔曼滤波器中解决含有复杂噪声的不确定系统的估计问题(总)

2 篇文章 0 订阅
1 篇文章 0 订阅

       先介绍一下自己,本人是一枚自动化专业研究生,主要是做估计的,在读研究生一年半的时间里,有幸发以一作发表了6篇英文论文以及3项发明专利,其中也包括SCI一区的论文,如今马上要去攻读博士,利用这个间隙,归纳总结一下自己的成果和想法,希望和大家分享一下自己的不成熟的想法和一些成果,全是干货,很多都是自己实际接触过的项目,希望有朋友能够提出问题,我会提供大部分程序和数据,希望和大家交流分享,因为很少写中文,文笔很差,希望大家见谅,非常感谢~

       先介绍一下自己的想法。人工智能的出现,极大的冲击了传统的解决问题的方法即:数学建模+估计算法的模式,人们不用在去花时间去建立数学模型,推演算法,而是利用大量的数据,由计算机自己构建复杂的网络最后给出结果,很多传统算法难以解决的复杂问题也因此迎刃而解。

       但是,我们应该慢慢舍弃传统的方法么,我并不这么认为,传统的算法有着自己的优点,其可观性、可控性、即时性以及准确性等等是现如今很多人工智能算法很难达到的,我更倾向于将二者结合起来,将诸如深度学习等现代人工智能算法去其糟粕,取其精华,融入到传统算法中去,在这里,我给自己挖一个坑,慢慢的在我的博客中分享一些我的想法以及成果。

       要想将二者结合,需要扎实的数学基础和理论知识,以我的这一点点知识,无法做到诸如很多大牛想的那样大一统,我只是由一个点入手,即卡尔曼滤波器入手。为了讨论融合人工智能算法的必要性,我认为必须先将传统的卡尔曼滤波器的方法做到一定的高度,才能由其他的角度去寻求突破。因此首先,我先从传统的算法开始介绍起,在讨论我在将其运用到实际应用中所遇到的问题和困惑,慢慢的改进算法,改进模型。因此,在接下来的一章中,我会介绍如何从建模的角度去改进卡尔曼滤波器,在我看来,这个非常的有用,因为,它可以让我深入了解卡尔曼滤波器的相关算法,和后面我想做的也是紧密相连的。

       

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值