【状态估计与多传感器数据融合】卡尔尔曼滤波(KF)、扩展卡尔曼滤波器(EKF)、 迭代扩展卡尔曼滤波器(IEKF)(附C++代码)

本文详细介绍了卡尔曼滤波(KF)、扩展卡尔曼滤波(EKF)和迭代扩展卡尔曼滤波(IEKF)的关键原理与应用场景。KF适用于线性系统,EKF通过线性化处理解决非线性问题,而IEKF通过多次迭代提高非线性系统的估计精度。这些滤波技术在自动驾驶、机器人定位和信号处理等领域有着广泛应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

文章目录


前言

认知有限,望大家多多包涵,有什么问题也希望能够与大家多交流,共同成长!

在这里插入图片描述
多传感器标定、数据融合与状态估计相关教程及博客请关注专栏:
https://blog.csdn.net/qq_35635374/article/details/138322694

本文先对卡尔尔曼滤波KF、扩展卡尔曼滤波器EKF、 迭代扩展卡尔曼滤波器IEKF做个简单的介绍,具体内容后续再更,其他模块可以参考去我其他文章


提示:以下是本篇文章正文内容
在这里插入图片描述
一般用卡尔曼滤

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

RoboticsTechLab

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值