SRU介绍

1.背景介绍

    RNN模型在机器翻译,语言模型,问答系统中取得了非凡的成就,由于RNN的结构,当前的层输入为前一层的输出,所有RNN比较适合时间序列问题,但也正是由于这种串行结构,限制了RNN模型的训练速度,与CNN相比,RNN并不能进行并行化处理。而SRU网络结构的提出就是为了解决这个问题,SRU(simple recurrent units)将大部分运算放到进行并行处理,只是将有具有小量运算的步骤进行串行。

2.SRU介绍

    SRU算法主要是将运算操作最多的去除时间上的依赖关系,并进行并行化处理,下图将SRU结构与传统的RNN进行了对比。
这里写图片描述

     另外,与其它的算法相比:
这里写图片描述

2.1 SRU网络结构

    SRU基础结构包含了一个单一的forget gate,假定输入Xt和时间t,需要计算线性的转换˜xt 和forget gate ft,则:
这里写图片描述

    上面的计算仅仅依靠Xt,因此,能够进行并行化处理。
     forget gate中包含internal state Ct,则计算output state ht:
这里写图片描述

其中g表示激活函数。
因此,整个SRU网络结构的计算结构:

这里写图片描述

其中,f表示forget gate,r表示 reset gate,h表示output state,c表示internal state。x表示输入。

2.2 CUDA-LEVEL optimization

综合上面的公式:
这里写图片描述
其中,n表示sequence length,U ∈ Rn×3d,d是hidden state size,k表示mibi-batcj的大小,U是一个(n,k,3d)的张量。
因此,Mini-batch版本的算法为:
这里写图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一夜了

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值