哎… 不出意外, 这应该是我最后一份面筋了. 光荣挂掉收场.
本着学习和锻炼自己的态度参加的春招, 虽然面的企业不多, 但感受到了各个公司不同的风格. 希望有时间可以趁着感触还深, 总结下,这几个月里断断续续的面试带来的感悟, 让收益最大化吧.
---------进入正题 -------
全程25mins
讲项目经验的时候, 问我针对我的分析结果, 运营出了什么策略达到了什么样的改善… 额… 这属于反制裁业务方是吗?给业务方提需求让他解决这个业务痛点是吗?这个工作流程有点奇怪了吧, 逆流…. 这是老板的事好吧
全是业务题:
- 抖音和快手的区别
- 日常使用抖音, 觉得有哪里需要改进
搜索系统 (同一个话题下, 出现的相同视频太多; 商品搜索出现的不全是商品 - ¬¬如果改进这个搜索问题, 应该制定哪些指标去评判
- 如果给用户打标的话, “高频搜索“&“低频搜索”用户应借助哪些指标如何区分
4.1 有了这些指标后, 如何对所有用户进行“高/低频”分类
机器学习-随机森林
4.2 随机森林弱解释性, 如何给业务方讲解你的模型
4.3 为什么认为逻辑回归的解释性就比随机森林强呢?
岗位主要职能:
什么什么data组? 涉及字节上下所有主流app +教育/游戏+创新.(听着像一个大的职能部门会被分到不同业务组) 数据量化帮业务方解决实际问题
- 功能上下线评估
- 运营活动评估
- 指标归因
- 自发寻找产品痛点并解决落地
面试结束20mins, 已收感谢信:) 还要是面筋写了一半收到的, 立刻丢下电脑, 拿起手机点了个外卖