sklearn学习笔记之Kmeans聚类

这篇博客介绍了sklearn库中的KMeans聚类算法,包括其构造函数的参数解释,如簇的数量、初始化方法、迭代次数等。还提到了KMeans对象的属性,如labels_、cluster_centers_和inertia_,以及方法如fit、predict和transform等。通过这些内容,读者可以深入理解KMeans如何进行数据聚类。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

先讲KMeans的构造函数:

使用前需要导入

import sklearn.cluster import KMeans
KMeans(n_clusters=8,
     init='k-means++', 
    n_init=10, 
    max_iter=300, 
    tol=0.0001, 
    precompute_distances='auto', 
    verbose=0, 
    random_state=None, 
    copy_x=True, 
    n_jobs=1, 
    algorithm='auto'
    )
各个参数的意义:

参数的意义:

  • n_clusters:簇的个数,即你想聚成几类
  • init: 初始簇中心的获取方法
  • n_init: 获取初始簇中心的更迭次数
  • max_iter: 最大迭代次数(因为kmeans算法的实现需要迭代)
  • tol</
Jupyter是一个开源的交互式笔记本工具,它支持多种编程语言,并且可以在一个笔记本中编写和运行代码、展示数据分析结果、撰写文档等。聚类分析是一种无监督学习的方法,用于将数据集中的样本划分为不同的组或簇,使得同一组内的样本相似度较高,而不同组之间的样本相似度较低。 在Jupyter中进行聚类分析可以通过使用Python编程语言和相关的数据分析库来实现。常用的聚类算法包括K-means、层次聚类、DBSCAN等。你可以在Jupyter中导入相应的库(如scikit-learn、numpy等),加载数据集,选择适当的聚类算法,并对数据进行聚类分析。 以下是一个简单的示例代码,展示了如何在Jupyter中使用K-means算法进行聚类分析: ```python # 导入所需的库 import numpy as np from sklearn.cluster import KMeans # 加载数据集 data = np.array([[1, 2], [1.5, 1.8], [5, 8], [8, 8], [1, 0.6], [9, 11]]) # 创建K-means模型并进行聚类 kmeans = KMeans(n_clusters=2) kmeans.fit(data) # 获取聚类结果 labels = kmeans.labels_ centroids = kmeans.cluster_centers_ # 打印聚类结果 print("聚类结果:") for i in range(len(data)): print("样本 {} 属于聚类 {}.".format(data[i], labels[i])) # 打印聚类中心点 print("聚类中心点:") for i in range(len(centroids)): print("聚类 {} 的中心点为 {}.".format(i, centroids[i])) ``` 这段代码使用了scikit-learn库中的KMeans类来进行K-means聚类分析。首先,我们加载了一个简单的二维数据集,然后创建了一个K-means模型,并指定了聚类的数量为2。接下来,我们使用fit()方法对数据进行聚类,并通过labels_属性获取每个样本所属的聚类标签,通过cluster_centers_属性获取每个聚类的中心点坐标。最后,我们打印了聚类结果和聚类中心点。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值