先讲KMeans的构造函数:
使用前需要导入
import sklearn.cluster import KMeans
KMeans(n_clusters=8,
init='k-means++',
n_init=10,
max_iter=300,
tol=0.0001,
precompute_distances='auto',
verbose=0,
random_state=None,
copy_x=True,
n_jobs=1,
algorithm='auto'
)
各个参数的意义:
参数的意义:
n_clusters
:簇的个数,即你想聚成几类init
: 初始簇中心的获取方法n_init
: 获取初始簇中心的更迭次数max_iter
: 最大迭代次数(因为kmeans算法的实现需要迭代)tol</