KMeans :初始随机设置K(k代表要凝聚的簇的个数)个质心,遍历每一个数据点,将其划分归于距它最近的质心,遍历完成之后,重新计算每个簇的质心,直至前后两次簇的质心变化不大。
优点: K均值简单有效,适合大多数数据类型,可多次运行。
缺点: 并不适合所有数据类型,不能处理非球形簇。K均值仅限于具有中心(质心)概念的数据。
凝聚层次聚类: 合并两个最接近的簇,更新邻接矩阵,以反映新的簇与原来的簇之间的临近性,重复这个过程,直至只剩一个簇。
优点:能够产生较高质量的聚类
缺点:计算和存储需求高,所有的合并都是最终的。先试用其他级数进行部分聚类可以解决这类问题。
DBSCAN: 任意两个足够靠近(距离在指定参数Eps之内)的核心点(给定邻域内(Eps)点的个数超过指定参数MinPts,)将放在同一个簇中。
优点:因为本身基于密度,因此可对抗噪声,能够处理任意形状的簇
缺点:当簇的密度变化太大时,这种算法不太适合,另外对于高维数据,密度不容易定义,处理困难。