HDU 2476 String painter(区间DP)@

 String painter
Time Limit:2000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u

Description

There are two strings A and B with equal length. Both strings are made up of lower case letters. Now you have a powerful string painter. With the help of the painter, you can change a segment of characters of a string to any other character you want. That is, after using the painter, the segment is made up of only one kind of character. Now your task is to change A to B using string painter. What’s the minimum number of operations?

Input

Input contains multiple cases. Each case consists of two lines: 
The first line contains string A. 
The second line contains string B. 
The length of both strings will not be greater than 100. 

Output

A single line contains one integer representing the answer.

Sample Input

zzzzzfzzzzz
abcdefedcba
abababababab
cdcdcdcdcdcd

Sample Output

6
7



题意:

给出两个串s1和s2,一次只能将一个区间刷一次,问最少几次能让s1=s2

例如zzzzzfzzzzz,长度为11,我们就将下标看做0~10

先将0~10刷一次,变成aaaaaaaaaaa

1~9刷一次,abbbbbbbbba

2~8:abcccccccba

3~7:abcdddddcba

4~6:abcdeeedcab

5:abcdefedcab

这样就6次,变成了s2串了

第二个样例也一样

0

先将0~10刷一次,变成ccccccccccb

1~9刷一次,cdddddddddcb

2~8:cdcccccccdcb

3~7:cdcdddddcdcb

4~6:cdcdcccdcdcb

5:cdcdcdcdcdcb

最后竟串尾未处理的刷一次

就变成了串2cdcdcdcdcdcd

所以一共7次

 

思路:这种球区间最优解的,明显就是区间DP了- -,需要注意的是,要将1串变为2串,可以说,主要是看2串两个相同字符之间的区间


区间DP的题目技巧性一般都很强,一个字符串的刷法比较好想,两个的刷法有点难,需要好好理解;


这题思路有点吊,先预处理串2,最坏情况没有串1需要刷几次,再处理串1,如果有相同,DP思想找最优

#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstdlib>
#include<map>
#include<cstring>
#include<vector>
#include<queue>
#include <bits/stdc++.h>
using namespace std;
const int N = 507;
const int inf = 0x3f3f3f3f;
const int maxn=1e6+2;
typedef long long LL;
char str1[N], str2[N];
int dp[N][N],ans[N];

int main()
{
    while(scanf("%s %s",str1+1, str2+1)!=EOF)
    {
        int len=strlen(str1+1);
        memset(dp,0,sizeof(dp));
        for(int i=1;i<=len;i++) dp[i][i]=1;
        for(int l=1;l<=len;l++)
        {
            for(int i=1;i+l<=len;i++)
            {
                int j=i+l;
                if(str2[i]!=str2[j]) dp[i][j]=dp[i][j-1]+1;
                else dp[i][j]=min(dp[i][j-1],dp[i+1][j]);
                for(int k=i+1;k<j;k++)
                {
                    if(str2[i]==str2[k]) dp[i][j]=min(dp[i][j],dp[i+1][k]+dp[k+1][j]);
                    dp[i][j]=min(dp[i][j],dp[i][k]+dp[k+1][j]);
                }
            }
        }
        memset(ans,0,sizeof(ans));
        for(int i=1;i<=len;i++) ans[i]=dp[1][i];
        for(int i=1;i<=len;i++)
        {
            if(str1[i]==str2[i]) ans[i]=ans[i-1];
            else
            {
                for(int j=1;j<i;j++) ans[i]=min(ans[i],ans[j]+dp[j+1][i]);
            }
        }
        cout<<ans[len]<<endl;
    }
    return 0;
}



[cpp]  view plain  copy
  1. #include <stdio.h>  
  2. #include <string.h>  
  3. #include <algorithm>  
  4. using namespace std;  
  5.   
  6. char s1[105],s2[105];  
  7. int dp[105][105];//dp[i][j]为i~j的刷法  
  8. int ans[105],i,j,k,len;  
  9.   
  10. int main()  
  11. {  
  12.     while(~scanf("%s%s",s1,s2))  
  13.     {  
  14.         len = strlen(s1);  
  15.         memset(dp,0,sizeof(dp));  
  16.         for(j = 0; j<len; j++)  
  17.         {  
  18.             for(i = j; i>=0; i--)//j为尾,i为头  
  19.             {  
  20.                 dp[i][j] = dp[i+1][j]+1;//先每个单独刷  
  21.                 for(k = i+1; k<=j; k++)//i到j中间所有的刷法  
  22.                 {  
  23.                     if(s2[i]==s2[k])  
  24.                         dp[i][j] = min(dp[i][j],(dp[i+1][k]+dp[k+1][j]));//i与k相同,寻找i刷到k的最优方案  
  25.                 }  
  26.             }  
  27.         }  
  28.         for(i = 0; i<len; i++)  
  29.             ans[i] = dp[0][i];//根据ans的定义先初始化  
  30.         for(i = 0; i<len; i++)  
  31.         {  
  32.             if(s1[i] == s2[i])  
  33.                 ans[i] = ans[i-1];//如果对应位置相等,这个位置可以不刷  
  34.             else  
  35.             {  
  36.                 for(j = 0; j<i; j++)  
  37.                     ans[i] = min(ans[i],ans[j]+dp[j+1][i]);//寻找j来分割区间得到最优解  
  38.             }  
  39.         }  
  40.         printf("%d\n",ans[len-1]);  
  41.     }  
  42.   
  43.     return 0;  
  44. }  

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: hdu 2829 Lawrence 斜率优化dp 这道题是一道经典的斜率优化dp题目,需要用到单调队列的思想。 题目大意是给定一个序列a,求出一个序列b,使得b[i]表示a[1]~a[i]中的最小值,且满足b[i] = min{b[j] + (i-j)*k},其中k为给定的常数。 我们可以将上式拆开,得到b[i] = min{b[j] - j*k} + i*k,即b[i] = i*k + min{b[j] - j*k},这个式子就是斜率优化dp的形式。 我们可以用单调队列来维护min{b[j] - j*k},具体思路如下: 1. 首先将第一个元素加入队列中。 2. 从第二个元素开始,我们需要将当前元素加入队列中,并且需要维护队列的单调性。 3. 维护单调性的方法是,我们从队列的末尾开始,将队列中所有大于当前元素的元素弹出,直到队列为空或者队列中最后一个元素小于当前元素为止。 4. 弹出元素的同时,我们需要计算它们对应的斜率,即(b[j]-j*k)/(j-i),并将这些斜率与当前元素的斜率比较,如果当前元素的斜率更小,则将当前元素加入队列中。 5. 最后队列中的第一个元素就是min{b[j] - j*k},我们将它加上i*k就得到了b[i]的值。 6. 重复以上步骤直到处理完所有元素。 具体实现可以参考下面的代码: ### 回答2: HDU 2829 Lawrence 斜率优化 DP 是一道经典的斜率优化 DP 题目,其思想是通过维护一个下凸包来优化 DP 算法。下面我们来具体分析一下这道题目。 首先,让我们看一下该题目的描述。题目给定一些木棒,要求我们将这些木棒割成一些给定长度,且要求每种长度的木棒的数量都是一样的,求最小的割枝次数。这是一个典型的背包问题,而且在此基础上还要求每种长度的木棒的数量相同,这就需要我们在状态设计上走一些弯路。 我们来看一下状态的定义。定义 $dp[i][j]$ 表示前 $i$ 个木棒中正好能割出 $j$ 根长度为 $c_i$ 的木棒的最小割枝次数。对于每个 $dp[i][j]$,我们可以分类讨论: 1. 不选当前的木棒,即 $dp[i][j]=dp[i-1][j]$; 2. 选当前的木棒,即 $dp[i][j-k]=dp[i-1][j-k]+k$,其中 $k$ 是 $j/c_i$ 的整数部分。 现在问题再次转化为我们需要在满足等量限制的情况下,求最小的割枝次数。可以看出,这是一个依赖于 $c_i$ 的限制。于是,我们可以通过斜率优化 DP 来解决这个问题。 我们来具体分析一下斜率优化 DP 算法的思路。我们首先来看一下动态规划的状态转移方程 $dp[i][j]=\min\{dp[i-1][k]+x_k(i,j)\}$。可以发现,$dp[i][j]$ 的最小值只与 $dp[i-1][k]$ 和 $x_k(i,j)$ 有关。其中,$x_k(i,j)$ 表示斜率,其值为 $dp[i-1][k]-k\times c_i+j\times c_i$。 接下来,我们需要维护一个下凸包,并通过斜率进行优化。我们具体分析一下该过程。假设我们当前要计算 $dp[i][j]$。首先,我们需要找到当前点 $(i,j)$ 在凸包上的位置,即斜率最小值的位置。然后,我们根据该位置的斜率计算 $dp[i][j]$ 的值。接下来,我们需要将当前点 $(i,j)$ 加入到下凸包上。 我们在加入点的时候需要注意几点。首先,我们需要将凸包中所有斜率比当前点小的点移除,直到该点能够加入到凸包中为止。其次,我们需要判断该点是否能够加入到凸包中。如果不能加入到凸包中,则直接舍弃。最后,我们需要保证凸包中斜率是单调递增的,这就需要在加入新的点之后进行上一步操作。 以上就是该题目的解题思路。需要注意的是,斜率优化 DP 算法并不是万能的,其使用情况需要根据具体的问题情况来确定。同时,该算法中需要维护一个下凸包,可能会增加一些算法的复杂度,建议和常规 DP 算法进行对比,选择最优的算法进行解题。 ### 回答3: 斜率优化DP是一种动态规划优化算法,其主要思路是通过对状态转移方程进行变形,提高算法的时间复杂度。HDU2829 Lawrence问题可以用斜率优化DP解决。 首先,我们需要了解原问题的含义。问题描述如下:有$n$个人在数轴上,第$i$个人的位置为$A_i$,每个人可以携带一定大小的行李,第$i$个人的行李重量为$B_i$,但是每个人只能帮助没有他们重量大的人搬行李。若第$i$个人搬运了第$j$个人的行李,那么第$i$个人会累加$C_{i,j}=\left|A_i-A_j\right|\cdot B_j$的体力消耗。求$m$个人帮助每个人搬运行李的最小体力消耗。 我们可以通过斜率优化DP解决这个问题。记$f_i$为到前$i$个人的最小体力消耗,那么状态转移方程为: $$f_i=\min_{j<i}\{f_j+abs(A_i-A_j)\cdot B_i\}$$ 如果直接使用该方程,时间复杂度为$O(n^2)$,如果$n=10^4$,则需要计算$10^8$次,运算时间极长。斜率优化DP通过一些数学推导将方程变形,将时间复杂度降低到$O(n)$,大大缩短了计算时间。 通过斜率优化DP的推导式子,我们可以得到转移方程为: $$f_i=\min_{j<i}\{f_j+slope(j,i)\}$$ 其中,$slope(j,i)$表示直线$j-i$的斜率。我们可以通过如下方式来求解$slope(j,i)$: $$slope(j,i)=\frac{f_i-f_j}{A_i-A_j}-B_i-B_j$$ 如果$slope(j,i)\leq slope(j,k)$,那么$j$一定不是最优,可以直接舍去,降低计算时间。该算法的时间复杂度为$O(n)$。 综上所述,斜率优化DP是一种动态规划优化算法,可以大大缩短计算时间。在处理类似HDU2829 Lawrence问题的时候,斜率优化DP可以很好地解决问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值