摘要
没有想到2021年11月底写的《SAR学习笔记》观看量还挺多的。接下来我将承接上篇文章内容,整理上篇文章中涉及到的代码实现部分:包括目标检测、一维距离像、二维距离像以及SAR成像的RDA算法。希望大家能有所收获。
文章目录
前言
这节内容主要从代码实现的角度,让大家对雷达领域中的目标检测、一维成像、二维成像问题有一个相对直观的认识。个人认为所涉及的代码涵盖了雷达领域的基础问题。
一、目标检测
1. 检测原理
根据《SAR学习笔记》,我们不难得到雷达接收的信号不外乎两种情况:有目标的回波信号;没有回波的信号。为了简化模型,这里不考虑雷达探测环境的干扰,只是考虑雷达接收机本身的热噪声干扰。则目标检测的信号模型如下:
为了进一步简化检测模型,先暂时不考虑接收到的回波信号相对雷达发射信号的时延以及能量衰减,即认为接收的回波信号即为雷达的发射信号。根据接收机的热噪声特性,
为高斯白噪声。
从信号处理的角度看,此时目标检测就是:根据雷达接收机接收到的信号,判断接收信号中是否含有目标信号。
当不存在干扰的情况下,雷达接收的信号
只有两种情况下:有目标情况的
;没有目标情况的0,此时在目标有无确定的情况下,雷达接收的信号是确定的,可以根据雷达接收的信号很容易判断目标的有无。
当干扰存在的情况下,无论目标有无,雷达接收的信号都是不确定的,是随机信号,直接根据雷达接收的信号判断雷达探测区域内的目标有无是比较困难的。针对这个问题,可以从概率论的角度来分析。
对接收的信号进行采样得到
,考虑接收机热噪声
是高斯白噪声,则随机变量
是个高斯变量,且目标的有无不影响随机变量
的方差(方差为噪声方差),只影响其均值(无目标,均值为0;有目标,均值为发射信号在该时刻的采样值)。此时
在目标有无下的概率密度函数分别为:
由于不同采样点处的随机变量相互独立,考虑
时间内的采样点数为N,则N个采样样本的联合概率密度为,即似然函数:
其中噪声功率谱密度(单边谱),
为采样时间间隔,
为噪声功率。当雷达接收到某个信号,并得到对应的采样值,将采样值带入上述公式,可以得到目标存在以及目标不存在两种情况下,雷达接收到此信号的概率
以及
。由此,可以根据哪种情况下,雷达接收到此信号的概率最大,判断目标的有无。即:
这种判断目标有无的方法(准则)称为最大似然准则,将上式变形得到:
此时判决表达式左侧式子称为似然比,是雷达接收信号
的函数。右侧数值
是判决统计量
在最大似然准则下的检测门限。
事实上,不同的检测准则,其检测统计量一般相同,为似然比,唯一不同的是检测门限
。下面是常见检测准则下的检测门限值。
- 最大似然检测下
- 最大后验概率准则下
其中分别为目标存在与否的先验概率;
- 最小错误准则下
- 最小风险Bayes准则下
其中分别对应的代价因子,如
为
情况下判为
- 奈曼-皮尔逊准则下
- 极大极小准则下
其中,