SAR学习笔记-代码部分

本文详细介绍了雷达领域中的目标检测、一维距离像、二维距离像和SAR成像的原理,重点探讨了奈曼-皮尔逊检测准则、匹配滤波、波束形成等技术,并提供了Matlab代码实现。通过对信号模型的分析和仿真,展示了雷达系统如何处理信号以获取目标的距离、方位信息,并最终形成高分辨率的SAR图像。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

摘要

       没有想到2021年11月底写的《SAR学习笔记》观看量还挺多的。接下来我将承接上篇文章内容,整理上篇文章中涉及到的代码实现部分:包括目标检测、一维距离像、二维距离像以及SAR成像的RDA算法。希望大家能有所收获。


前言

       这节内容主要从代码实现的角度,让大家对雷达领域中的目标检测、一维成像、二维成像问题有一个相对直观的认识。个人认为所涉及的代码涵盖了雷达领域的基础问题。

一、目标检测

1. 检测原理

       根据《SAR学习笔记》,我们不难得到雷达接收的信号不外乎两种情况:有目标的回波信号;没有回波的信号。为了简化模型,这里不考虑雷达探测环境的干扰,只是考虑雷达接收机本身的热噪声干扰。则目标检测的信号模型如下:

\left\{\begin{matrix} H_{0}:x\left ( t \right )=n\left ( t \right )\; \; \; 0\leq t\leq T \\ H_{1}:x\left ( t \right )=s\left ( t \right )+n\left ( t \right )\; \; \; 0\leq t\leq T \end{matrix}\right.

       为了进一步简化检测模型,先暂时不考虑接收到的回波信号相对雷达发射信号的时延以及能量衰减,即认为接收的回波信号即为雷达的发射信号s\left ( t \right )。根据接收机的热噪声特性,n\left ( t \right )为高斯白噪声。

       从信号处理的角度看,此时目标检测就是:根据雷达接收机接收到的信号,判断接收信号中是否含有目标信号。

       当不存在干扰n\left ( t \right )的情况下,雷达接收的信号x\left ( t \right )只有两种情况下:有目标情况的s\left ( t \right );没有目标情况的0,此时在目标有无确定的情况下,雷达接收的信号是确定的,可以根据雷达接收的信号很容易判断目标的有无。

      当干扰n\left ( t \right )存在的情况下,无论目标有无,雷达接收的信号都是不确定的,是随机信号,直接根据雷达接收的信号判断雷达探测区域内的目标有无是比较困难的。针对这个问题,可以从概率论的角度来分析。

      对接收的信号x\left ( t \right )进行采样得到x_{k}=x\left ( t_{k} \right ),考虑接收机热噪声n_{k}=n\left ( t_{k} \right )是高斯白噪声,则随机变量x_{k}是个高斯变量,且目标的有无不影响随机变量x_{k}的方差(方差为噪声方差),只影响其均值(无目标,均值为0;有目标,均值为发射信号在该时刻的采样值)。此时x_{k}在目标有无下的概率密度函数分别为:

f\left ( x_{k}|H_{0} \right )=\frac{1}{\sqrt{2\pi \sigma }}e^{-\frac{x^{2}_{k}}{2\sigma ^{2}}}

f\left ( x_{k}|H_{1} \right )=\frac{1}{\sqrt{2\pi \sigma }}e^{-\frac{\left ( x_{k} -s_{k}\right )^{2}}{2\sigma ^{2}}}

       由于不同采样点处的随机变量x_{k}相互独立,考虑0\leq t\leq T时间内的采样点数为N,则N个采样样本的联合概率密度为,即似然函数:

f\left ( x_{1},x_{2},......, x_{N}|H_{0} \right )=\left ( \frac{1}{\sqrt{2\pi \sigma }} \right )^{N}e^{-\frac{1}{N_{0}}\sum_{k=1}^{N}x^{2}_{k}\Delta t}\; \; \; \; \; \; \; \; \; \; (1)

 f\left ( x_{1},x_{2},......, x_{N}|H_{1} \right )=\left ( \frac{1}{\sqrt{2\pi \sigma }} \right )^{N}e^{-\frac{1}{N_{0}}\sum_{k=1}^{N}\left ( x_{k} -s_{k}\right )^{2}\Delta t}\; \; \; \; \; \; \; \; \; \; \left ( 2 \right )

       其中N_{0}噪声功率谱密度(单边谱),\Delta t为采样时间间隔,\sigma ^{2}为噪声功率。当雷达接收到某个信号,并得到对应的采样值,将采样值带入上述公式,可以得到目标存在以及目标不存在两种情况下,雷达接收到此信号的概率f\left ( x_{1},x_{2},......, x_{N}|H_{0} \right )以及f\left ( x_{1},x_{2},......, x_{N}|H_{1} \right )。由此,可以根据哪种情况下,雷达接收到此信号的概率最大,判断目标的有无。即:

f\left ( x_{1},x_{2},......, x_{N}|H_{1} \right )\overset{\overset{H_{0}}{<}}{\underset{H_{1}}{>}}f\left ( x_{1},x_{2},......, x_{N}|H_{0} \right )

 这种判断目标有无的方法(准则)称为最大似然准则,将上式变形得到:

l\left ( x \right )=\frac{f\left ( x_{1},x_{2},......, x_{N}|H_{1} \right )}{f\left ( x_{1},x_{2},......, x_{N}|H_{0} \right )}\overset{\overset{H_{0}}{<}}{\underset{H_{1}}{>}}l_{0}=1\; \; \; \; \; \; \; \; \; \; \left ( 3 \right )

       此时判决表达式左侧式子l\left ( x \right )称为似然比,是雷达接收信号x=\left [ x_{1},x_{2},......, x_{N} \right ]的函数。右侧数值l_{0}是判决统计量l\left ( x \right )在最大似然准则下的检测门限。

       事实上,不同的检测准则,其检测统计量一般相同,为似然比l\left ( x \right ),唯一不同的是检测门限l_{0}。下面是常见检测准则下的检测门限值。

  • 最大似然检测下

l_{0}=1

  • 最大后验概率准则下

l_{0}=\frac{P\left ( H_{0} \right )}{P\left ( H_{1} \right )}

其中P\left ( H_{1}\right ),P\left ( H_{0}\right )分别为目标存在与否的先验概率;

  • 最小错误准则下

l_{0}=\frac{P\left ( H_{0} \right )}{P\left ( H_{1} \right )}

  • 最小风险Bayes准则下

 l_{0}=\frac{\left ( C_{10}-C_{00} \right )P\left ( H_{0} \right )}{\left ( C_{01}-C_{11} \right )P\left ( H_{1} \right )}

其中C_{00},C_{01},C_{10},C_{11}分别对应的代价因子,如C_{10}H_{0}情况下判为H_{1}

  • 奈曼-皮尔逊准则下

l_{0}=\lambda \left ( P_{f} \right )

  • 极大极小准则下

l_{0}=\frac{\left ( C_{10}-C_{00} \right )q_{0}}{\left ( C_{01}-C_{11} \right )\left ( 1- q_{0}\right )

其中,q_{0}

评论 18
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

【杨(_> <_)】

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值