【文档智能】符合人类阅读顺序的文档模型-LayoutReader原理及权重开源

引言

阅读顺序检测旨在捕获人类读者能够自然理解的单词序列。现有的OCR引擎通常按照从上到下、从左到右的方式排列识别到的文本行,但这并不适用于某些文档类型,如多栏模板、表格等。LayoutReader模型使用seq2seq模型捕获文本和布局信息,用于阅读顺序预测,在实验中表现出色,并显著提高了开源和商业OCR引擎在文本行排序方面的表现。

一、LayoutReader模型

1.1 编码器(Encoder)

LayoutReader使用LayoutLM的布局模型作为编码器。在编码阶段,LayoutReader将源序列和目标序列打包成一个连续的输入序列,并设计了自注意力掩码来控制token之间的可见性。具体来说,LayoutReader允许源序列中的标记相互关注,同时阻止目标序列中的标记关注右侧上下文。

自注意力掩码 M M M的设计:
M i , j = { 1 if  i < j  or  i , j ∈ src 0 otherwise M_{i,j} = \begin{cases} 1 & \text{if } i < j \text{ or } i, j \in \text{src} \\ 0 & \text{otherwise} \end{cases} Mi,j={10if i<j or i,jsrcotherwise
其中, i i i j j j是打包输入序列中的索引,可能来自源或目标序列; i , j ∈ s r c i, j ∈ src i,jsrc表示两个标记都来自源序列。

1.2 解码器(Decoder)

在解码阶段,由于源序列和目标序列是重新排序的序列,预测候选可以被限制在源序列内。因此,模型被要求预测源序列中的索引。概率计算如下:

其中, i i i是源序列中的索引;$e_i 和 和 e_j 分别是源序列的第 分别是源序列的第 分别是源序列的第i 个和第 个和第 个和第j 个输入嵌入 ( i n p u t e m b e d d i n g s ) ; 个输入嵌入(input embeddings); 个输入嵌入(inputembeddings)h_k 是第 是第 是第k 步的隐藏状态 ( h i d d e n s t a t e s ) ; 步的隐藏状态(hidden states); 步的隐藏状态(hiddenstates)b_k 是第 是第 是第k$步的偏置(bias)。

二、实验

进行了三个实验来评估LayoutReader在ReadingBank上的表现,包括阅读顺序检测、输入顺序研究和对OCR引擎的适应性

实验结果表明,LayoutReader在阅读顺序检测任务上超越了其他基线方法,并且可以显著提高OCR引擎的文本行排序。

三、非官方开源权重

  • huggingface:https://huggingface.co/yujunhuinlp/LayoutReader-only-layout-large

  • github code(only layout):https://github.com/yujunhuics/LayoutReader

  • bbox排序

    import torch
    from model import LayoutLMv3ForBboxClassification
    from collections import defaultdict
    
    CLS_TOKEN_ID = 0
    UNK_TOKEN_ID = 3
    EOS_TOKEN_ID = 2
    
    
    def BboxesMasks(boxes):
        bbox = [[0, 0, 0, 0]] + boxes + [[0, 0, 0, 0]]
        input_ids = [CLS_TOKEN_ID] + [UNK_TOKEN_ID] * len(boxes) + [EOS_TOKEN_ID]
        attention_mask = [1] + [1] * len(boxes) + [1]
        return {
            "bbox": torch.tensor([bbox]),
            "attention_mask": torch.tensor([attention_mask]),
            "input_ids": torch.tensor([input_ids]),
        }
    
    
    def decode(logits, length):
        logits = logits[1: length + 1, :length]
        orders = logits.argsort(descending=False).tolist()
        ret = [o.pop() for o in orders]
        while True:
            order_to_idxes = defaultdict(list)
            for idx, order in enumerate(ret):
                order_to_idxes[order].append(idx)
            order_to_idxes = {k: v for k, v in order_to_idxes.items() if len(v) > 1}
            if not order_to_idxes:
                break
            for order, idxes in order_to_idxes.items():
                idxes_to_logit = {}
                for idx in idxes:
                    idxes_to_logit[idx] = logits[idx, order]
                idxes_to_logit = sorted(
                    idxes_to_logit.items(), key=lambda x: x[1], reverse=True
                )
                for idx, _ in idxes_to_logit[1:]:
                    ret[idx] = orders[idx].pop()
        return ret
    
    
    def layoutreader(bboxes):
        inputs = BboxesMasks(bboxes)
        logits = model(**inputs).logits.cpu().squeeze(0)
        orders = decode(logits, len(bboxes))
        return orders
    
    
    if __name__ == '__main__':
        bboxes = [[584, 0, 595, 1], [35, 120, 89, 133],
                  [35, 140, 75, 152]]
        model_path = ""
        model = LayoutLMv3ForBboxClassification.from_pretrained()
    
        print(layoutreader(bboxes))
    # [1, 2, 0]
    
  • 效果样例

参考文献

  • paper:LayoutReader: Pre-training of Text and Layout for Reading Order Detection,https://arxiv.org/pdf/2108.11591
  • Official code:https://github.com/microsoft/unilm/tree/master/layoutreader
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值